专栏首页用户画像Leetcode No.63 不同路径 II

Leetcode No.63 不同路径 II

一、题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]] 输出:2 解释: 3x3 网格的正中间有一个障碍物。 从左上角到右下角一共有 2 条不同的路径: 1. 向右 -> 向右 -> 向下 -> 向下 2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]] 输出:1

提示:

m == obstacleGrid.length n == obstacleGrid[i].length 1 <= m, n <= 100 obstacleGrid[i][j] 为 0 或 1

二、解题思路

我们用 f(i, j)表示从左上角走到 (i, j) 的路径数量,其中 i 和 j 的范围分别是 [0, m) 和 [0, n)。

由于我们每一步只能从向下或者向右移动一步,因此要想走到 (i, j),如果向下走一步,那么会从 (i-1, j) 走过来;如果向右走一步,那么会从 (i, j-1)走过来。因此我们可以写出动态规划转移方程:

f(i, j) = f(i-1, j) + f(i, j-1)

需要注意的是,如果 i=0,那么 f(i-1,j)并不是一个满足要求的状态,我们需要忽略这一项;同理,如果 j=0,那么 f(i,j-1) 并不是一个满足要求的状态,我们需要忽略这一项。

由于f(0, j)只能一直向右移动到达,f(i, 0)只能一直向下移动达到,只有一条路径,如果这条路径上有一个障碍物,后面的路径是不通的,因此我们将障碍物前的路径f(0, j)和f(i, 0)初始化为1,障碍物和后面的路径初始化为0。

最终的答案即为 f(m-1,n-1)。

三、代码

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m=obstacleGrid.length;
        int n=obstacleGrid[0].length;
        return uniquePaths(m,n,obstacleGrid);
    }
    public int uniquePaths(int m, int n,int[][] obstacleGrid) {
        int[][] dp=new int[m][n];
        for(int i=0;i<m;i++){
            if(obstacleGrid[i][0]==1){
                break;
            }else{
                dp[i][0]=1;
            }
        }
        for(int i=0;i<n;i++){
            if(obstacleGrid[0][i]==1){
                break;
            }else{
                dp[0][i]=1;
            }
        }
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(obstacleGrid[i][j]==0){
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
                }else{
                    dp[i][j]=0;
                }
            }
        }
        return dp[m-1][n-1];
    }
}

四、复杂度分析

时间复杂度:O(mn)。

空间复杂度:O(mn),即为存储所有状态需要的空间。注意到 f(i, j) 仅与第 i 行和第i−1 行的状态有关,因此我们可以使用滚动数组代替代码中的二维数组,使空间复杂度降低为 O(n)。此外,由于我们交换行列的值并不会对答案产生影响,因此我们总可以通过交换 m 和 n 使得 m≤n,这样空间复杂度降低至 O(min(m,n))。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 【Leetcode】63. 不同路径 II

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图...

    Leetcode名企之路
  • LeetCode 63. 不同路径 II

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

    freesan44
  • LeetCode 63. 不同路径 II(DP)

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

    Michael阿明
  • 63. 不同路径 II

    CaesarChang张旭
  • ​LeetCode刷题实战63:不同路径 II

    https://leetcode-cn.com/problems/unique-paths-ii/

    程序IT圈
  • leet笔记-63.不同路径II

    时间复杂度: O(mxn) 遍历obstacleGrid的每一个格子,所需要的时间度量为m*n

    Python编程爱好者
  • 【动态规划/路径问题】强化 DP 分析方法练习题 ...

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

    宫水三叶的刷题日记
  • LeetCode 0063. 不同路径 II[动态规划详解]

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

    Yano_nankai
  • Leetcode No.62 不同路径

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

    week
  • 【leetcode刷题】20T29-不同路径 II

    https://leetcode-cn.com/problems/unique-paths-ii/

    木又AI帮
  • 【leetcode刷题】T157-不同路径 II

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

    木又AI帮
  • LeetCode50-80题汇总,速度收藏!

    今天把最近发布的50-80篇LeetCode文章整理一下,平时文章都放在比较末尾,阅读量都不高,相信很多人都没看过,如果对于算法感兴趣的,建议可以每篇认真阅读一...

    程序IT圈
  • 9月技术文章汇总

    Leetcode名企之路
  • LeetCode1-100题汇总,希望对你有点帮助!

    时间很快,公众号发布的LeetCode题目,已经达到100道题了。今天把发布的1-100篇LeetCode文章整理一下,平时文章都放在比较末尾,阅读量都不高,相...

    程序IT圈
  • LeetCode1-120题汇总,希望对你有点帮助!

    时间很快,公众号发布的LeetCode题目,已经达到120道题了。今天把发布的1-120篇LeetCode文章整理一下,平时文章都放在比较末尾,阅读量都不高,相...

    程序IT圈
  • 【Leetcode】62. 不同路径

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

    Leetcode名企之路
  • LeetCode 0062. 不同路径[动态规划详解]

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

    Yano_nankai
  • LeetCode 62. 不同路径

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

    freesan44
  • 【LeetCode】62. 不同路径

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

    韩旭051

扫码关注云+社区

领取腾讯云代金券