前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >根因分析相关论文整理

根因分析相关论文整理

原创
作者头像
durdendong-董善东
发布2021-06-03 19:39:49
1.3K0
发布2021-06-03 19:39:49
举报
文章被收录于专栏:智能运维解决方案

维度搜索:从多维指标中, 挖掘出异常的指标维度。

主要包括Hotspot、iDice等

1、 Sun Y, Zhao Y, Su Y, et al. Hotspot: Anomaly localization for additive kpis with multi-dimensional attributes[J]. IEEE Access, 2018, 6: 10909-10923.

  • 论文地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8288614

2、Lin Q, Lou J G, Zhang H, et al. iDice: problem identification for emerging issues[C]//Proceedings of the 38th International Conference on Software Engineering. 2016: 214-224.

  • 论文地址:https://dl.acm.org/doi/pdf/10.1145/2884781.2884795

基于指标相似关联/随机游走等算法,构建关系图。

主要包括MS-rank、Automap、Microrca等

1、Ma M, Lin W, Pan D, et al. Ms-rank: Multi-metric and self-adaptive root cause diagnosis for microservice applications[C]//2019 IEEE International Conference on Web Services (ICWS). IEEE, 2019: 60-67.

  • 论文地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8818432

2、Ma M, Xu J, Wang Y, et al. Automap: Diagnose your microservice-based web applications automatically[C]//Proceedings of The Web Conference 2020. 2020: 246-258.

  • 论文地址:https://dl.acm.org/doi/pdf/10.1145/3366423.3380111

3、Meng Y, Zhang S, Sun Y, et al. Localizing failure root causes in a microservice through causality inference[C]//2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). IEEE, 2020: 1-10.

  • 论文地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9213058

4、Qiu J, Du Q, Yin K, et al. A causality mining and knowledge graph based method of root cause diagnosis for performance anomaly in cloud applications[J]. Applied Sciences, 2020, 10(6): 2166.

  • 论文地址:https://www.mdpi.com/2076-3417/10/6/2166/htm

5、Wu L, Tordsson J, Elmroth E, et al. Microrca: Root cause localization of performance issues in microservices[C]//NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2020: 1-9.

  • 论文地址:https://hal.inria.fr/hal-02441640/document

基于调用链的拓扑关系, 识别根因

1、Liu P, Xu H, Ouyang Q, et al. Unsupervised Detection of Microservice Trace Anomalies through Service-Level Deep Bayesian Networks[C]//2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2020: 48-58.

  • 论文地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9251058

2、Brandón Á, Solé M, Huélamo A, et al. Graph-based root cause analysis for service-oriented and microservice architectures[J]. Journal of Systems and Software, 2020, 159: 110432.

  • 论文地址:https://www.sciencedirect.com/science/article/abs/pii/S0164121219302067

3、Cai Z, Li W, Zhu W, et al. A Real-Time Trace-Level Root-Cause Diagnosis System in Alibaba Datacenters[J]. IEEE Access, 2019, 7: 142692-142702.

  • 论文地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8852648

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
前端性能监控
前端性能监控(Real User Monitoring,RUM)是一站式前端监控解决方案,专注于 Web、小程序等场景监控。前端性能监控聚焦用户页面性能(页面测速,接口测速,CDN 测速等)和质量(JS 错误,Ajax 错误等),并且联动腾讯云应用性能监控实现前后端一体化监控。用户只需要安装 SDK 到自己的项目中,通过简单配置化,即可实现对用户页面质量的全方位守护,真正做到低成本使用和无侵入监控。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档