前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从零开始,耗时两年,19岁小伙自制一块32位Risc-V处理器,可玩「贪吃蛇」

从零开始,耗时两年,19岁小伙自制一块32位Risc-V处理器,可玩「贪吃蛇」

作者头像
机器之心
发布2021-06-08 11:00:54
8110
发布2021-06-08 11:00:54
举报
文章被收录于专栏:机器之心机器之心机器之心

机器之心报道

编辑:杜伟

从设计 CPU、制作原型机、最终成品到软件编程,19 岁极客小伙用了整整两年的时间。

RISC-V 是一个基于精简指令集(RISC)原则的开源指令集架构(ISA),它是对应开源软件运动的一种「开源硬件」。该项目于 2010 年始于加州大学伯克利分校,项目贡献者是该大学以外的志愿者和行业工作者。

RISC-V 指令集的设计考虑了小型、快速、低功耗的现实情况来实做,但并没有对特定的微架构做过度的设计。与大多数指令集相比,RISC-V 指令集可以自由地用于任何目的,允许任何人设计、制造和销售 RISC-V 芯片和软件。

2021 年 4 月初,一位热衷于自制 CPU 的 19 岁极客小伙 Filip Szkandera自己设计和制造出了 32 位功能性 RISC-V CPU,并构建了与其他自制计算机不同的个人计算机「菠萝一号(Pineapple ONE)」。从设计、调试和安装 CPU 和所有硬件,Filip 整整花了两年时间。Filip 还受邀在东京举办的 RISC-V Days Tokyo 2021 Spring 上做了演示,他也成为了该会议自 2017 年举办以来最年轻的演示者。

创建者 Filip Szkandera。

整体来看,「菠萝一号」是由 8 块正方形打印电路板垂直堆叠组成,每块边侧高度约为 10 厘米,外加一个 VGA 显示接口卡。一共使用了 230 多个集成电路,大多数是 74HCT 系列逻辑芯片。示意图如下:

32 位 RISC-V CPU 的规格如下:

  • 最大时钟速度:500kHz
  • 程序内存:512kB
  • 内存 512kB
  • 闪存 512kB
  • VGA 输出:200×150px(黑白)
  • 2 个 8 位输入端口
  • 2 个 8 位输出端口

目前,「菠萝一号」计算机支持的命令包括:HELLO、HI、PEEK <ADDRESS>、POKE <ADDRESS> <DATA>、SYSTEM INFORMATION、CLEAR 等。

此外虽然 CPU 的运行速度仅有 500kHz,但玩个贪吃蛇游戏还是绰绰有余的:

Filip 在一篇博客中介绍了他从设计 CPU、制作原型机、输入 / 输出端口、最终成品到软件编程的技术细节(下文以第一人称叙述)。

设计自己的 RISC-V CPU

此前,我在 Youtube 上发现了电子爱好者 Ben Eater 自制 CPU(构建著名的 8 位计算机和经典的 6502 微处理器)的相关教程,所以非常着迷,也就有了自制 CPU 的想法。然而,我觉得对于 CPU 基础知识了解的还不够,因此又观看了 Google Robotics 软件工程师 Robert Baruch 的教程视频,他只使用了基本逻辑元件构建了 32 位 RISC-V CPU。

之后,我便开始在一个名为「Logisim-Evolution」的项目中制造自己的 RISC-V CPU。我给自己设定的目标是不使用任何微控制器或 FPGA,只使用基本的分立逻辑元件。编译器支持的最基础 RISC-V CPU 必须包含扩展「整数(I)」且至少为 32 位。此外,我还需要安装一个 VGA(视频图形阵列)输出卡。

我花了整整 6 个月的时间在 Logisim 项目上,终于得到一个可运行的程序模拟。下一步绘制所有模块的原理图、从 JLCPCB 网站上购买所有的 PCB(印制电路板)并重新设计。由于这是我首次购买 PCB,担心搞砸一切,于是决定在设计过程中分模块处理,一次选购几个,以免自己应接不暇。

Logisim-Evolution 项目中的模拟原理图如下:

经过了两轮设计,最后只剩下几个模块需要处理,其中一个是直接生成器(immediate generator)。当我绞尽脑汁想将它从模拟转化为合适的原理图时,发现自己犯了一个致命错误:完全不清楚模拟是如何运行的。幸运的是,修复起来也没有那么困难,于是对已经制作完成的 PCB 做了改进。

原型机

接下来,我将开源电子原型平台 Arduino 连接到每个 PCB 的输入端、同时监控输出端并与预测端(prediction)做对比,从而对这些 PCB 进行测试。设置好之后,一切就可以自动运行了。每次测试都至少持续数个小时。

当我准备好将所有 PCB 整合到一块时,模块也已经间隔地安装在了木头上,并使用 3D 打印垫片(spacer)来固定。接着上传了一个测试程序并开始测试。

原型机示意图如下:

Arduino 平台仅用来调试,没有在最终成品中使用。

尽管我单独测试了每个 PCB,但首次尝试还是失败了,这不足为奇。我又不得不花费大量时间来找失败的原因,找出了一些错误,如很难发现的时序问题。

输入 / 输出端口

我构建的 RISC-V CPU 拥有两个 8 位输入端口和两个 8 位输出端口,你可以通过 RJ50 连接器在前板上访问。此外,顶部模块上有一个 7 段式显示器(7-segment display),它与一个可以通过程序访问的寄存器相连。

至于与 VGA 显示器的连接,我受 Ben Eater 的启发构建了一个 VGA 卡。VGA 的输出分辨率是 200×150 像素,黑白显示。虽然我想实现彩色显示,但需要使用大型 V-RAM,太贵了,也就放弃了。

下板(board)将显示存储在 EEPROM(带电可擦可编程只读存储器,型号 39SF010A)中的静态图像。我在最终成品中使用到了双端口 SRAM(静态随机存取存储器)。

我还构建了一些演示用的 I/O 模块,它们在末端都有 RJ50 连接器。

PS/2 解码器是买的现成的,我没有时间自己制作。

最终成品

让原型机运行不太容易,在大约 5 个月的时间后,我终于成功了。

我又重新设计了所有的 PCB,修复错误,并将这些 PCB 以塔状结构堆叠,所以每个模块仅用针座(pinheader)相连接。重新设计 PCB 大约花了 3 个月的时间,然后对最终的 PCB 进行有序排列。

此外,我还设计并使用 Prusa i3 3D 打印机打印了一个圆柱体外壳,足以容纳所有的 PCB 和 I/O 连接器,这样也可以将键盘和 VGA 显示器直接连接到计算机。

最终成品,左:无圆柱体外壳,右:安装圆柱体外壳。

最终成品的组件拆卸:

方框图:

编程

最后,在经过了数百小时的设计、焊接和调试,我终于看到了成功的曙光。在好友 Jan Vykydal 的帮助下,我设置了一个兼容 RISC-V 且运行良好的编译器,使用 C 语言编写了一些系统软件和 demo 程序。这个编译器可以生成机器代码,我使用一个 Python 脚本来接收代码并 flash 入 CPU 内存。

我还创建了一个具有一些有用函数的库,代码如下:

Pineshell:

利用这个库,我创建了一个简单的 shell 程序,这样可以通过「与其中一个输入端口相连的 PS/2 键盘」来实现与该程序的交互。我使用带有模块的 PS/2 键盘将输入信号解码为 8 位。

大功告成!

参考链接:

https://riscv-association.jp/en/2021/04/filip-szkandera/

https://hackaday.io/project/178826-pineapple-one/details

https://www.youtube.com/watch?v=NUAVKNVrPh0&t=16s

https://spectrum.ieee.org/geek-life/hands-on/build-a-riscv-cpu-from-scratch

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-05-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档