首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >谷歌提出纯 MLP 构成的视觉架构,无需卷积、注意力 !

谷歌提出纯 MLP 构成的视觉架构,无需卷积、注意力 !

作者头像
AI科技大本营
发布2021-06-08 21:17:28
5930
发布2021-06-08 21:17:28
举报

当前,卷积神经网络(CNN)和基于自注意力的网络(如近来大火的 ViT)是计算机视觉领域的主流选择,但研究人员没有停止探索视觉网络架构的脚步。近日,来自谷歌大脑的研究团队(原 ViT 团队)提出了一种舍弃卷积和自注意力且完全使用多层感知机(MLP)的视觉网络架构,在设计上非常简单,并且在 ImageNet 数据集上实现了媲美 CNN 和 ViT 的性能表现。

计算机视觉的发展史证明,规模更大的数据集加上更强的计算能力往往能够促成范式转变。虽然卷积神经网络已经成为计算机视觉领域的标准,但最近一段时间,基于自注意力层的替代方法 Vision Transformer(ViT)实现新的 SOTA 性能。从技术上讲,ViT 模型延续了长久以来去除模型中手工构建特征和归纳偏置的趋势,并进一步依赖基于原始数据的学习。

近日,原 ViT 团队提出了一种不使用卷积或自注意力的 MLP-Mixer 架构(简称 Mixer),这是一种颇具竞争力并且在概念和技术上都非常简单的替代方案。

Mixer 架构完全基于在空间位置或特征通道重复利用的多层感知机(MLP),并且仅依赖于基础矩阵乘法运算、数据布局变换(如 reshape 和 transposition)和非线性层。

  • 论文地址:https://arxiv.org/pdf/2105.01601.pdf
  • 项目地址:https://github.com/google-research/vision_transformer/tree/linen

结果表明,虽然 Mixer 架构很简单,但取得了极具竞争力的结果。当在大型数据集(约 1 亿张图像)上进行预训练时,该架构在准确率 / 成本权衡方面能够媲美 CNN 和 ViT,实现了接近 SOTA 的性能,在 ImageNet 数据集上取得了 87.94% 的 top1 准确率。

对于该研究提出的 Mixer 架构,特斯拉 AI 高级总监 Andrej Karpathy 认为:「很好!1×1 卷积通常利用深度卷积实现堆叠或交替,但在这里,通道或空间混合得到简化或者实现完全对称。」

另一用户表示:「CV 领域网络架构的演变从 MLP 到 CNN 到 Transformer 再回到 MLP,真是太有意思了。」

不过,谷歌 DeepMind 首席科学家 Oriol Vinyals 也提出了质疑,他认为:「per-patch 全连接,那不就是卷积吗」

那就先来看一下MLP-Mixer这个新框架吧,它不使用卷积或自注意力机制。相反,Mixer体系架构完全基于在空间位置或特征通道上重复应用的多层感知器(MLP),它只依赖基础的矩阵乘法操作、数据排布变换(比如reshape、transposition)以及非线性层。

下图展示了MLP-Mixer的整体结构:

首先,它的输入是一系列图像块的线性投影(其形状为patches x channels),其次,Mixer使用两种类型的MLP层:

1、通道混合MLP(channel-mixing MLPs ):用于不同通道之间进行通信,允许对每个token独立操作,即采用每一行作为输入。

2、token混合MLP(The token-mixing MLPs ):用于不同空间位置(token)之间的通信;允许在每个通道上独立操作,即采用每一列作为输入。

以上两种类型的MLP层交替执行以实现两个输入维度的交互。

在极端情况下,MLP-Mixer架构可以看作一个特殊的CNN,它使用1×1通道混合的卷积,全感受域的单通道深度卷积以及token混合的参数共享。典型的CNN不是混合器的特例,卷积也比MLPs中的普通矩阵乘法更复杂(它需要额外的成本来减少矩阵乘法或专门实现)不过,尽管它很简单,MLP-Mixer还是取得了很不错的结果。

当对大型数据集进行预训练时(大约100万张图片),它达到了之前CNNs和Transformers在ImageNet上的最佳性能:87.94%的 top-1 验证准确率。当对1-10万张图片大小的数据集进行预训练时,结合现代正则化技术( regularization techniques),Mixer同样取得了强大的性能。

Mixer 混合器架构

一般来讲,当今深度视觉体系结构采用三种方式进行特征混合:

(i)在给定的空间位置;

(ii)不同的空间位置之间;

(iii)将上述两种方式组合。

在CNNs中,(ii)是采用N× N进行卷积和池化,其中N>1;(i)采用1×1卷积;较大的核则同时执行(i)和(ii)。通常更深层次的神经元有更大的感受野。

在Transformer和其他注意力架构中,自注意力层允许同时执行(i)和(ii),而MLP只执行(i)。Mixer架构背后的思想是:通过MLP实现每个通道混合操作(i)和 token混合操作(ii)的显著分离。

在上图体系架构中,Mixer将序列长度为S的非重叠的图像块作为输入,每个图像块都投影到所需的隐层维度C,并产生一个二维实值输入X∈ RS×C。如果原始图像的分辨率为(H x W),每个图像块的分辨率为(P x P),那么图像块的数量则为S=HW/P2。所有的块都采用相同的投影矩阵进行线性投影。

Mixer由等尺寸的多层组成,每层有两个MLP块。第一个是token mixing MLP块:它作用于X的列,从RS映射到R S,可在所有列中共享。第二个是Channel-mixing MLP块:它作用于X的行,从Rc映射到 R C,可在所有行中共享。每个MLP块包含两个全连接层和一个独立于输入的非线性层。其基本方程如下:

图中,Ds Dc分别代表token-mixing与channel-mixing MLP中隐层宽度。由于Ds的选择独立于输入图像块的数量,因此,网络的计算复杂度与输入块的数量成线性关系;此外,Dc独立于块尺寸,整体计算量与图像的像素数成线性关系,这类似于CNN。

如上文所说,相同的通道混合MLP(或令牌混合MLP)应用于X的每一行和列,在每一层内绑定通道混合MLP的参数都是一种自然选择,它提供了位置不变性,这是卷积的一个显著特征。

不过,跨通道绑定参数的情况在CNN中并不常见。例如CNN中可分离卷积,将不同的卷积核独立应用于每个通道。而Mixer中的token 混合MLP可以对所有通道共享相同的核(即获得完全感受野)。通常来讲,当增加隐层维数C或序列长度S时,这种参数绑定可以避免体系架构增长过快,并且节省内存。令人没想到的是,这种绑定机制并没有影响性能。

Mixer中的每个层(除了初始块投影层)接收相同大小的输入。这种“各向同性”设计最类似于使用固定宽度的Transformer和RNN。这与大多数CNN不同,CNN具有金字塔结构:越深的层具有更低的分辨率,更多的通道。需要注意的是,以上是典型的设计,除此之外也存在其他组合,例如各向同性网状结构和金字塔状VIT。除了MLP层之外,Mixer还使用了其他标准的体系结构组件:Skip 连接和层规范化。

此外,与ViTs不同,Mixer不使用位置嵌入,因为token混合mlp对输入token的顺序敏感,因此可以学习表示位置。最后,Mixer使用一个标准的分类head和一个线性分类器。

更多实验结果和代码

该研究用实验对 MLP-Mixer 模型的性能进行了评估。其中,模型在中大规模数据集上进行预训练,采用一系列中小型下游分类任务,并对以下三个问题进行重点研究:

  • 在下游任务上的准确率;
  • 预训练的总计算成本,这对于在上游数据集上从头开始训练模型非常重要;
  • 推断时的吞吐量,这在实际应用中非常重要。

该研究的实验目的不是展示 SOTA 结果,而在于表明:一个简单的基于 MLP 的模型就可以取得与当前最佳的 CNN、基于注意力的模型相媲美的性能。

下表 1 列出了 Mixer 模型的各种配置以对标一些最新的 SOTA CNN 和基于注意力的模型:

下表 2 给出了最大 Mixer 模型与 SOTA 模型的性能对比结果:

当在 ImageNet-21k 上进行带有额外正则化的预训练时,Mixer 实现了非常好的性能(ImageNet 上 84.15% top-1),略低于其他模型。当上游数据集的大小增加时,Mixer 的性能显著提高。具体来说,Mixer-H/14 在 ImageNet 上取得了 87.94% top-1 的准确率,比 BiT-ResNet152x4 高 0.5%,比 ViT-H/14 低 0.5%。值得一提的是,Mixer-H/14 的运行速度要比 ViT-H/14 快 2.5 倍,比 BiT 快 2 倍。

图 2(左)展示了表 2 中 SOTA 模型在 ImageNet 数据集上的准确率、训练成本帕累托前沿(Pareto frontier):

下表展示了在多种模型和预训练是数据集规模上,Mixer 和其他一些模型的性能对比结果。

由上表可得,当在 ImageNet 上从头开始训练时, Mixer-B/16 取得了一个合理的 top-1 准确率 76.44%,这要比 ViT-B/16 低 3%。随着预训练数据集的增大,Mixer 的性能逐步提升。值得一提的是,在 JFT-300M 数据集上预训练、微调到 224 分辨率的 Mixer-H/14 取得了 86.32% 的准确率,比 ViT-H/14 仅低 0.3%,但运行速度是其 2.2 倍。

下图是原论文附带的代码,很简单,只有43行。

更多细节可参考论文原文。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-05-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI科技大本营 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档