前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >如何“优雅”的测量系统性能

如何“优雅”的测量系统性能

作者头像
用户1605515
发布2021-07-05 18:09:50
7560
发布2021-07-05 18:09:50
举报
文章被收录于专栏:嵌入式程序猿嵌入式程序猿

【说在前面的话】


在之前的文章《【嵌入式秘术】相约榨干SysTick的每一滴汁水》里,我们介绍了一个以“寄居”形式(也就是在不影响用户已有SysTick应用的情况下)测量CPU性能的开源函数库 perf_counter。其仓库连接如下:

https://github.com/GorgonMeducer/perf_counter

不知不觉中,perf_counter已经经历了大大小小7个版本:

  • 提高了delay_us() 的精度
  • 增加了对GCC、IAR的支持
  • 改进了 __cycleof__() 宏,使其支持嵌套、并不再强制绑定 printf()

如果你使用的是Arm Compiler5(armcc)或是Arm Compiler 6(armclang),移植就特别简单。你可以按照这篇文章的手把手教程在5分钟内完成部署。

【关于对GCC和IAR的支持】


对于GCC和IAR来说,由于它们都不支持 Arm Compiler 5/6 所特有的 Linker语法——$Sub$$ 和 $Super$$,因此无法直接通过 Lib 的方式实现对已有SysTick应用的 “寄居”——这里就只能忍痛割爱了。

这并不影响我们以源代码的形式将它们加入已有的 GCC 或是 IAR 工程。大体步骤如下:

第一步:perf_counter.c perf_counter.h 拷贝到你的工程目录下,并将perf_counter.c 加入到编译列表中;

第二步:perf_counter.h 所在的路径加入到编译器的头文件搜索路径中;

第三步perf_counter.c 依赖 CMSIS 5.4.0 及其以上版本,确保你的工程中正确的包含了对CMSIS的支持。(这里就不再赘述)。

第四步:在需要用到 perf_counter 功能的C源文件中加入对头文件的包含:

代码语言:javascript
复制
#include "perf_counter.h"

第五步:一般来说,用户会在某一个地方,比如 main() 函数内完成对CPU工作频率的配置,我们应该在完成这一工作之后确保全局变量 SystemCoreClock 被正确的更新——保存当前CPU的工作频率,比如:

代码语言:javascript
复制
extern uint32_t SystemCoreClock;
void main(void)
{
    system_clock_update();    //! 更新CPU工作频率
    SystemCoreClock = 72000000ul //! 假设更新后的系统频率是 72MHz
    ...
}

一般来说,你的芯片工程如果本身都是基于较新的CMSIS框架而创建的,你的启动文件中已经为你定义好了全局变量 SystemCoreClock——当然,凡事都有例外,如果你在编译的时候报告找不到变量 SystemCoreClock 或者说“Undefined symbol __SystemCoreClock” 之类的,你自己定义一下就好了,比如:

代码语言:javascript
复制
uint32_t SystemCoreClock;
void main(void)
{
    system_clock_update();    //! 更新CPU工作频率
    SystemCoreClock = 72000000ul //! 假设更新后的系统频率是 72MHz
    ...
}

在这以后,我们需要对 perf_counter 库进行初始化。这里分两种情况:

1、用户自己的应用里完全没有使用SysTick。对于这种情况,我们要在 main.c (或者别的什么源文件里)添加一个SysTick中断处理程序:

代码语言:javascript
复制
#include "perf_counter.h"
...

__attribute__((used))    //!< 避免下面的处理程序被编译器优化掉
void SysTick_Handler(void)
{
    //! 这个函数来自于 perf_counter.h 
    user_code_insert_to_systick_handler();
}

然后我们在 main() 函数里初始化 perf_counter 服务:

代码语言:javascript
复制
#include <stdbool.h>
...

void main(void)
{
    system_clock_update();       //! 更新CPU工作频率
    SystemCoreClock = 72000000ul //! 假设更新后的系统频率是 72MHz
    init_cycle_counter(false);
    ...
}

需要特别注意的是:由于用户并没有自己初始化 SysTick,因此我们需要将这一情况告知 perf_counter 库——由它来完成对 SysTick 的初始化——这里传递 false 给函数 init_cycle_counter() 就是这个功能。如果由perf_counter 库自己来初始化SysTick,它会为了自己功能更可靠将 SysTick的溢出值(LOAD寄存器)设置为最大值(0x00FFFFFF)。

2、用户自己的应用里使用了SysTick,拥有自己的初始化过程。对于这种情况,我们需要确保一件事情:即,SysTick的CTRL寄存器的 BIT2(SysTick_CTRL_CLKSOURCE_Msk)是否被置位了——如果其值是1,说明SysTick使用了跟CPU一样的工作频率,那么SysTick的测量结果就是CPU的周期数;如果其值是0,说明SysTick使用了来自于别处的时钟源,这个时钟源具体频率是多少就只能看芯片手册了(比如STM32就喜欢将系统频率做 1/8 分频后提供给SysTick作为时钟源),此时SysTick测量出来的结果就不是CPU的周期数。

在确保了 CTRL 寄存器的 BIT2 被正确置位,并且SysTick中断被使能(置位 BIT1,SysTick_CTRL_TICKINT_Msk )后,我们可以简单的通过 init_cycle_counter() 函数告诉perf_counter模块:SysTick 被用户占用了——这里传递 true 就实现这一功能。

代码语言:javascript
复制
#include <stdbool.h>
...

void main(void)
{
    system_clock_update();       //! 更新CPU工作频率
    SystemCoreClock = 72000000ul //! 假设更新后的系统频率是 72MHz
    init_cycle_counter(true);
    ...
}

当然,不要忘记向已经存在的SysTick_Handler()内加入perf_counter()的插入函数:

代码语言:javascript
复制
#include "perf_counter.h"
...

__attribute__((used))    //!< 避免下面的处理程序被编译器优化掉
void SysTick_Handler(void)
{
    ...
    //! 这个函数来自于 perf_counter.h 
    user_code_insert_to_systick_handler();
    ...
}

至此,我们就完成了 perf_counter 模块在 GCCIAR中的部署。

【如何测量代码片断占用了多少CPU资源】


很多时候,我们会关心某一段代码或者函数究竟用了多少CPU周期,比如,我们写了一个算法,你很担心“这个算法究竟使用了多少CPU资源”,为了解决这个问题,我们需要用到如下的公式:

CPU资源占用(百分比) =

(函数运行所需的时间)➗ (算法运行间隔的最小值)

✖️ 100%

对于【函数运行所需的时间】【算法运行间隔的最小值】来说,虽然它们都是时间单位,但考虑到CPU的频率是给定的(不变的),因此,这里的时间单位在乘以CPU的工作频率后都可以被换算为CPU的周期数。举例来说,假如【算法运行间隔的最小值】是 20ms、CPU的频率是72MHz,那么对应的周期数就是 72000000 * (20ms / 1000ms) = 1440000 个周期。看来上述公式中唯一需要我们实际测量的就是【函数运行所需的周期数】了。

perf_counter 提供了一个非常简单的运算符:__cycleof__()。假设我们要测量的代码片断如下:

代码语言:javascript
复制
...
my_algorithm_step_a();
my_algorithm_step_b();
...
my_algorithm_step_c();
...

则我们可以轻松的通过__cycleof__()运算来测量结果:

代码语言:javascript
复制
...
__cycleof__("my algorithm") {
    my_algorithm_step_a();
    my_algorithm_step_b();
    ...
    my_algorithm_step_c();
}
...

如果你的系统支持 printf(),则可以看到类似如下的输出结果:

带入上述公式:

525139 / 14400000 * 100% ≈ 36.5%

就计算出这个算法占用了大约 36.5% 的CPU资源,值得说明的是,从原理上看,这一方式对裸机和RTOS同样有效哦

有的小伙伴很快会说,我的系统并不允许我调用printf,那我还可以使用 __cycleof__() 么?当然了!就继续以上述代码为例子:

代码语言:javascript
复制
int32_t nCycleUsed = 0;

...
__cycleof__("my algorithm", {
    nCycleUsed = _;
    }) {
    my_algorithm_step_a();
    my_algorithm_step_b();
    ...
    my_algorithm_step_c();
}
...

这里的代码所实现的功能是:

  • 测量了用户函数 my_algorithm_step_xxx() 所使用的周期数:
  • 测量的结果被转存到了一个叫做 nCycleUsed 的变量中;
  • __cycleof__() 将不会调用 printf() 进行任何内容输出。

我相信很多小伙伴会揉了揉眼睛、仔细看了又看,然后回过头来满头问号:

这是C语言?

这是什么语法?

不要怀疑,这就是C语言,只不过使用了一点GCC的语法扩展(感兴趣的小伙伴可以复制这里的连接 https://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html#Statement-Exprs),考虑到本文只介绍 perf_counter 如何使用,而对其如何实现的并不关心,我们不妨略过GCC扩展语法的部分,专门来看看上述代码的使用细节:

  • 首先,为了方便大家观察,我们先忽略圆括号内的部分:
代码语言:javascript
复制
...
__cycleof__(...) {
    my_algorithm_step_a();
    my_algorithm_step_b();
    ...
    my_algorithm_step_c();
}
...

可以发现,这里跟此前并没有什么不同:花括号包围的部分就是我们要测量的代码片断;

  • 接下来,我们专门来看__cycleof__() 圆括号中的部分:
代码语言:javascript
复制
int32_t nCycleUsed = 0;

...
__cycleof__("my algorithm", {
    nCycleUsed = _;
    })
{
...
}
...

容易发现,如果以“,” 为分隔符,那么实际传递给 __cycleof__() 的是两个部分:

1、标注测量名称的字符串

代码语言:javascript
复制
"my algorithm"

2、一段用花括号括起来的代码片断:

代码语言:javascript
复制
{nCycleUsed = _;}

其中,nCycleUsed 是一个事先已经初始化好的变量。

这里,对于表示测量名称的字符串"my algorithm",在这一用法下在最终的编译结果里并不会占用任何RAM或者是ROM,但作为语法结构是必须的

对于花括号所囊括的代码片段来说,实际上在这个花括号里,你几乎可以为所欲为:

  • 你可以写任意数量的代码
  • 你可以调用函数
  • 你可以定义变量(当然这里定义变量肯定就是局部变量了)

但我们一般要做的事情其实是通过__cycleof__() 所定义的一个局部变量"_"来获取测量结果——这也是下面代码的本意:

代码语言:javascript
复制
nCycleUsed = _;

需要说明的是,这个局部变量"_"生命周期仅限于这个花括号中,因此不会影响 __cycleof__() 整个结构之外的部分——或者说,下述代码是没有意义的:

代码语言:javascript
复制
int32_t nCycleUsed = 0;

...
__cycleof__("my algorithm", {
        nCycleUsed = _;
    }) {
    my_algorithm_step_a();
    my_algorithm_step_b();
    ...
    my_algorithm_step_c();
}

printf("Cycle Used %d", _);

编译器会毫不客气的告诉你 "_" 是一个未定义的变量,反之如果你这么做:

代码语言:javascript
复制
int32_t nCycleUsed = 0;

...
__cycleof__("my algorithm", {
        nCycleUsed = _;
        printf("Cycle Used %d", _);
    }) {
    my_algorithm_step_a();
    my_algorithm_step_b();
    ...
    my_algorithm_step_c();
}

则会看到你心怡的输出结果:

【没有什么黑魔法】


如果你对上述例子的等效形式(展开形式)感到非常好奇,其实大可不必,上述代码在“逻辑上等效”于如下的形式:

代码语言:javascript
复制
int32_t nCycleUsed = 0;

...
do {
    int64_t _ = get_system_ticks();
    {
        my_algorithm_step_a();
        my_algorithm_step_b();
        ...
        my_algorithm_step_c();
    }
    _ = get_system_ticks() - _;
    
    //! 我们添加的代码
    nCycleUsed = _;
    printf("Cycle Used %d", _);
} while(0);

是不是突然就没有那么神秘了?通过“逻辑等效”的形式展开,我们很容易发现一些有趣的内容:

  • 起核心作用的是一个叫做 get_system_ticks() 的函数。实际上它返回的是从复位后 SysTick被使能至今所经历的 CPU 周期数——由于它是int64_t 的类型,因此不用担心超过 SysTick 24位计数器的量程,也不用担心人类历史范围内会发生溢出的可能。 知道这一点后,聪明的小伙伴就可以自己整活儿了。
  • 由于 "_" 是一个局部变量,因此可以判断 __cycleof__() 是支持嵌套的

需要特别说明的是,get_system_tick() 函数自己也是有CPU时钟开销的,所以如果要获得较为精确的结果,推荐通过下面的方法来获取校准值:

代码语言:javascript
复制
static int64_t s_lPerfCalib;

void calib_perf_counter(void) {
    int64_t lTemp = get_system_tick();
    s_lPerfCalib = get_system_tick() - lTemp;
}

int64_t get_perf_counter_calib(void)
{
    return s_lPerfCalib;
}

具体如何使用,这里就不再赘述了。

【说在后面的话】


perf_counter 仍然在不停的演化中,这多亏了开源社区不断的使用和反馈。perf_counter 的应用场景实际上非常广泛,包括但不限于:

  • 为裸机或者RTOS提供Cycle级别的性能测量;
  • 评估代码片段的CPU占用;
  • 算法精细优化时用于测量和观察优化的效果;
  • 测量中断的响应时间;
  • 测量中断的发生间隔(查找最短时间间隔);
  • 评估GUI的帧率或者刷新率;
  • 与SystemCoreClock计算后,获得一个系统时间戳(Timestamp);
  • 当做Realtime Clock的基准;
  • 作为随机数种子
  • ……

实际上perf_counter在我参与的另外一个开源项目 arm-2d里也被悄悄的藏在了 platform_utilities.lib 中用来为例子代码提供帧率的测量服务。

如果你在使用中发现了任何问题、有任何反馈意见,还请提出你的issue,或者直接在评论区留言。谢谢啦。


本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-06-08,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 嵌入式程序猿 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档