前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >项目实践 | 从零开始边缘部署轻量化人脸检测模型——训练篇

项目实践 | 从零开始边缘部署轻量化人脸检测模型——训练篇

作者头像
集智书童公众号
发布2021-07-07 10:42:31
8300
发布2021-07-07 10:42:31
举报
文章被收录于专栏:集智书童

1简介

该模型是针对边缘计算设备设计的轻量人脸检测模型。

  • 在模型大小上,默认FP32精度下(.pth)文件大小为 1.04~1.1MB,推理框架int8量化后大小为 300KB 左右。
  • 在模型计算量上,320x240的输入分辨率下 90~109 MFlops左右。
  • 模型有两个版本,version-slim(主干精简速度略快),version-RFB(加入了修改后的RFB模块,精度更高)。
  • 提供320x240、640x480不同输入分辨率下使用widerface训练的预训练模型,更好的工作于不同的应用场景。

2数据处理

2.1 输入尺寸的选择

由于涉及实际部署时的推理速度,因此模型输入尺寸的选择也是一个很重要的话题。

在作者的原github中,也提到了一点,如果在实际部署的场景中大多数情况为中近距离、人脸大同时人脸的数量也比较少的时候,则可以采用

320\times 240

的输入尺寸;

如果在实际部署的场景中大多数情况为中远距离、人脸小同时人脸的数量也比较多的时候,则可以采用

640\times 480

或者

480\times 360

的输入尺寸;

这里由于使用的是EAIDK310进行部署测试,边缘性能不是很好,因此选择原作者推荐的最小尺寸

320\times 240

进行训练和部署测试。 注意:过小的输入分辨率虽然会明显加快推理速度,但是会大幅降低小人脸的召回率。

2.2 数据筛选

由于widerface官网数据集中有比较多的低于10像素的人脸照片,因此在这里选择剔除这些像素长宽低于10个pixel的照片;

这样做的原因是:不清楚的人脸,不太利于高效模型的收敛,所以需要进行过滤训练。

3SSD网络结构

SSD是一个端到端的模型,所有的检测过程和识别过程都是在同一个网络中进行的;同时SSD借鉴了Faster R-CNN的Anchor机制的想法,这样就像相当于在基于回归的的检测过程中结合了区域的思想,可以使得检测效果较定制化边界框的YOLO v1有比较好的提升。

SSD较传统的检测方法使用顶层特征图的方法选择了使用多尺度特征图,因为在比较浅的特征图中可以对于小目标有比较好的表达,随着特征图的深入,网络对于比较大特征也有了比较好表达能力,故SSD选择使用多尺度特征图可以很好的兼顾大目标和小目标。

SSD模型结构如下:

这里关于SSD不进行更多的阐述,想了解的小伙伴可以扫描下方的二维码查看(是小编在CSDN的记录,非常详细!!!):

整个项目模型搭建如下:

代码语言:javascript
复制
# 网络的主题结构为SSD模型
class SSD(nn.Module):
    def __init__(self, num_classes: int, base_net: nn.ModuleList, source_layer_indexes: List[int],
                 extras: nn.ModuleList, classification_headers: nn.ModuleList,
                 regression_headers: nn.ModuleList, is_test=False, config=None, device=None):
        """Compose a SSD model using the given components.
        """
        super(SSD, self).__init__()

        self.num_classes = num_classes
        self.base_net = base_net
        self.source_layer_indexes = source_layer_indexes
        self.extras = extras
        self.classification_headers = classification_headers
        self.regression_headers = regression_headers
        self.is_test = is_test
        self.config = config

        # register layers in source_layer_indexes by adding them to a module list
        self.source_layer_add_ons = nn.ModuleList([t[1] for t in source_layer_indexes
                                                   if isinstance(t, tuple) and not isinstance(t, GraphPath)])
        if device:
            self.device = device
        else:
            self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        if is_test:
            self.config = config
            self.priors = config.priors.to(self.device)

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        confidences = []
        locations = []
        start_layer_index = 0
        header_index = 0
        end_layer_index = 0
        for end_layer_index in self.source_layer_indexes:
            if isinstance(end_layer_index, GraphPath):
                path = end_layer_index
                end_layer_index = end_layer_index.s0
                added_layer = None
            elif isinstance(end_layer_index, tuple):
                added_layer = end_layer_index[1]
                end_layer_index = end_layer_index[0]
                path = None
            else:
                added_layer = None
                path = None
            for layer in self.base_net[start_layer_index: end_layer_index]:
                x = layer(x)
            if added_layer:
                y = added_layer(x)
            else:
                y = x
            if path:
                sub = getattr(self.base_net[end_layer_index], path.name)
                for layer in sub[:path.s1]:
                    x = layer(x)
                y = x
                for layer in sub[path.s1:]:
                    x = layer(x)
                end_layer_index += 1
            start_layer_index = end_layer_index
            confidence, location = self.compute_header(header_index, y)
            header_index += 1
            confidences.append(confidence)
            locations.append(location)

        for layer in self.base_net[end_layer_index:]:
            x = layer(x)

        for layer in self.extras:
            x = layer(x)
            confidence, location = self.compute_header(header_index, x)
            header_index += 1
            confidences.append(confidence)
            locations.append(location)

        confidences = torch.cat(confidences, 1)
        locations = torch.cat(locations, 1)

        if self.is_test:
            confidences = F.softmax(confidences, dim=2)
            boxes = box_utils.convert_locations_to_boxes(
                locations, self.priors, self.config.center_variance, self.config.size_variance
            )
            boxes = box_utils.center_form_to_corner_form(boxes)
            return confidences, boxes
        else:
            return confidences, locations

    def compute_header(self, i, x):
        confidence = self.classification_headers[i](x)
        confidence = confidence.permute(0, 2, 3, 1).contiguous()
        confidence = confidence.view(confidence.size(0), -1, self.num_classes)

        location = self.regression_headers[i](x)
        location = location.permute(0, 2, 3, 1).contiguous()
        location = location.view(location.size(0), -1, 4)

        return confidence, location

    def init_from_base_net(self, model):
        self.base_net.load_state_dict(torch.load(model, map_location=lambda storage, loc: storage), strict=True)
        self.source_layer_add_ons.apply(_xavier_init_)
        self.extras.apply(_xavier_init_)
        self.classification_headers.apply(_xavier_init_)
        self.regression_headers.apply(_xavier_init_)

    def init_from_pretrained_ssd(self, model):
        state_dict = torch.load(model, map_location=lambda storage, loc: storage)
        state_dict = {k: v for k, v in state_dict.items() if not (k.startswith("classification_headers") or k.startswith("regression_headers"))}
        model_dict = self.state_dict()
        model_dict.update(state_dict)
        self.load_state_dict(model_dict)
        self.classification_headers.apply(_xavier_init_)
        self.regression_headers.apply(_xavier_init_)

    def init(self):
        self.base_net.apply(_xavier_init_)
        self.source_layer_add_ons.apply(_xavier_init_)
        self.extras.apply(_xavier_init_)
        self.classification_headers.apply(_xavier_init_)
        self.regression_headers.apply(_xavier_init_)

    def load(self, model):
        self.load_state_dict(torch.load(model, map_location=lambda storage, loc: storage))

    def save(self, model_path):
        torch.save(self.state_dict(), model_path)

4损失函数

损失函数作者选择使用的依旧是SSD的Smooth L1 Loss以及Cross Entropy Loss,其中Smooth L1 Loss用于边界框的回归,而Cross Entropy Loss则用于分类。

具体pytorch实现如下:

代码语言:javascript
复制
class MultiboxLoss(nn.Module):
    def __init__(self, priors, neg_pos_ratio,
                 center_variance, size_variance, device):
        """Implement SSD Multibox Loss.

        Basically, Multibox loss combines classification loss
         and Smooth L1 regression loss.
        """
        super(MultiboxLoss, self).__init__()
        self.neg_pos_ratio = neg_pos_ratio
        self.center_variance = center_variance
        self.size_variance = size_variance
        self.priors = priors
        self.priors.to(device)

    def forward(self, confidence, predicted_locations, labels, gt_locations):
        """Compute classification loss and smooth l1 loss.

        Args:
            confidence (batch_size, num_priors, num_classes): class predictions.
            locations (batch_size, num_priors, 4): predicted locations.
            labels (batch_size, num_priors): real labels of all the priors.
            boxes (batch_size, num_priors, 4): real boxes corresponding all the priors.
        """
        num_classes = confidence.size(2)
        with torch.no_grad():
            # derived from cross_entropy=sum(log(p))
            loss = -F.log_softmax(confidence, dim=2)[:, :, 0]
            mask = box_utils.hard_negative_mining(loss, labels, self.neg_pos_ratio)

        confidence = confidence[mask, :]
        # 分类损失函数
        classification_loss = F.cross_entropy(confidence.reshape(-1, num_classes), labels[mask], reduction='sum')
        pos_mask = labels > 0
        predicted_locations = predicted_locations[pos_mask, :].reshape(-1, 4)
        gt_locations = gt_locations[pos_mask, :].reshape(-1, 4)
        # 边界框回归损失函数
        smooth_l1_loss = F.smooth_l1_loss(predicted_locations, gt_locations, reduction='sum')  # smooth_l1_loss
        # smooth_l1_loss = F.mse_loss(predicted_locations, gt_locations, reduction='sum')  #l2 loss
        num_pos = gt_locations.size(0)
        return smooth_l1_loss / num_pos, classification_loss / num_pos

5结果预测

输入为:

输出为:

输入为:

输出为:

6模型转换

由于部署使用的是Tengine边缘推理框架,由于pytorch输出的模型无法直接转换到tmfile模型下,因此还是选择使用onnx中间件的形式进行过度,具体实现代码如下:

代码语言:javascript
复制
model_path = "models/pretrained/version-RFB-320.pth"
net = create_Mb_Tiny_RFB_fd(len(class_names), is_test=True)
net.load(model_path)
net.eval()
net.to("cuda")

model_name = model_path.split("/")[-1].split(".")[0]
model_path = f"models/onnx/{model_name}.onnx"

dummy_input = torch.randn(1, 3, 240, 320).to("cuda")
# dummy_input = torch.randn(1, 3, 480, 640).to("cuda") #if input size is 640*480
torch.onnx.export(net, dummy_input, model_path, verbose=False, input_names=['input'], output_names=['scores', 'boxes'])

得到onnx模型后便可以进行Tengine模型的转换和部署,该部分将在下一篇文章继续讨论。

7参考

[1].https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB

[2].https://github.com/onnx/onnx

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-05-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 集智书童 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1简介
  • 2数据处理
    • 2.1 输入尺寸的选择
      • 2.2 数据筛选
      • 3SSD网络结构
      • 4损失函数
      • 5结果预测
      • 6模型转换
      • 7参考
      相关产品与服务
      对象存储
      对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档