专栏首页机器学习AI算法工程YOLOv5:道路损伤检测

YOLOv5:道路损伤检测

道路损伤检测任务是对几种道路损伤进行检测,不仅要分类出损伤类别,还要定位到损伤的位置,故实质是一个目标检测问题。

https://rdd2020.sekilab.global/overview/

GRDDC'2020 数据集是从印度、日本和捷克收集的道路图像。包括三个部分:Train, Test1, Test2。训练集包括带有 PASCAL VOC 格式 XML 文件标注的道路图像。在给参赛者的数据Test1 和 Test2 中是没有标注。train则包含标注。

数据分布如下:

三个数据集和三个国家的图像分布统计

训练数据中每种损坏类型的实例数

GRDD 挑战赛的评估标准是F1-Score。

对于参赛者提交的预测结果,如果预测满足以下两个标准,则认为它是正确的。

  • predicted bounding box 与 ground truth bounding box 之间的重叠区域超过 50%,即 IoU > 0.5。
  • 预测的标签与实际的标签相匹配,如图像的标注文件中所指定的(ground truth)。

评估脚本比较两个输入文件以及计算所提交的 F1-Score。F1-Score 为精确率和召回率的调和平均数,精确度是真阳性与所有预测阳性的比率。召回率是真正的阳性结果与所有实际阳性结果的比率。

各参数的细节如下:

  • 真阳性(TP):ground truth 中存在一个损害实例,并且该实例的标签和边界框被正确预测,IoU>0.5。
  • 假阳性(FP):当模型预测了图像中某一特定位置的损害实例,但该实例并不存在于图像的 ground truth 中。也包括了预测标签与实际标签不匹配的情况。
  • 假阴性(FN):当一个损害实例出现在 ground truth 中,但模型无法预测正确的标签或该实例的边界框。

召回率:

F1指标对召回和精度的权重相等。因此,参赛者需要在两者都有中等水平的表现,而不是在其中一个方面表现突出,在另一个方面表现不佳。

冠军团队

项目 代码 获取方式:

关注微信公众号 datadyx 然后回复 道路 即可获取。

AI项目体验地址 https://loveai.tech

IMSC团队(Hedge等,来自美国南加州大学和约旦德国约旦大学),提出方法基于 ultralytics-YOLO (u-YOLO) [YOLOv5, 2020],并应用了测试时数据增强(TTA),提高了模型的鲁棒性。TTA 通过对每张测试图像进行多次变换(如水平翻转、提高图像分辨率)并生成新的图像来进行数据增广。

新的图像与现有图像一起被输入到训练好的 u-YOLO 模型中。因此,对应于每一个测试图像,使用增强的图像生成多个预测。在此过程中产生的重复或重叠的预测使用非极大抑制(NMS)算法进行过滤。整个方法被称为集成预测(Ensemble Prediction,EP)。

除了 EP,该团队还提出了另一种方法,称为集成模型(EM)。顾名思义,EM是将 u-YOLO 模型的不同变体进行集成。鉴于训练一个 u-YOLO 模型涉及到调整不同的超参数,使用这些参数的不同组合会产生不同的训练模型。作者选择这些模型的一个子集,以使它们的整体精度最大化。每幅图像都会在所有选定的模型上测试,然后对每个模型的预测结果进行平均,最后应用非极大抑制。这种集成技术通过降低预测方差实现了更好的准确性。

团队的最终方案是将这两种方法结合起来,Ensemble Model with Ensemble Prediction(EM+EP)。可以想象每幅图像的测试时间肯定是很长的,但好在这只是比赛。

当然作者也比较了三种方法(EM、EP和EM+EP)在速度和精度方面的表现。统计结果显示,虽然在(EM+EP)的情况下,准确率得到了提高,达到了最高的 F1-score(测试1为0.67)(大力出奇迹啊!),而如果用每幅图像的检测时间来衡量,该方法在检测速度方面是最差的。

获胜团队的最后得分及代码如下:

Test1-Score:0.6748

Test2-Score:0.6662

(这个结果是远超第二名的!)

本文分享自微信公众号 - 机器学习AI算法工程(datayx)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2021-07-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 使用YOLOv5模型进行目标检测!

    目标检测是计算机视觉领域的一大任务,大致分为一阶段目标检测与两阶段目标检测。其中一阶段目标检测模型以YOLO系列为代表。最新的YOLOv5在各个数据集上体现出收...

    Datawhale
  • YOLOv5在最新OpenVINO 2021R02版本的部署与代码演示详解

    YOLOv5在OpenVINO上的部署,网上有很多python版本的代码,但是基本都有个很内伤的问题,就是还在用pytorch的一些库做解析,C++的代码有个...

    CV君
  • YOLOv5在最新OpenVINO 2021R02版本的部署与代码演示详解

    YOLOv5在OpenVINO上的部署,网上有很多python版本的代码,但是基本都有个很内伤的问题,就是还在用pytorch的一些库做解析,C++的代码有个更...

    OpenCV学堂
  • YOLODet最新算法的目标检测开发套件,优化到部署

    目前检测库下模型均要求使用PyTorch 1.5及以上版本或适当的develop版本。----

    机器学习AI算法工程
  • Yolov5实现道路裂缝检测,附数据集

    因为我将训练好的模型已经放入./runs/train/exp_1000/weights/路径下了,如果自己训练了模型后,记得修改为自己的模型路径。

    机器学习AI算法工程
  • PP-YOLOv2开源,你的目标检测器又该升级了!性能超越YOLOv5且推理耗时保持不变

    本文是百度的研究员对PP-YOLO的一次升级,从PP-YOLO出发,通过增量消融方式逐步添加有助于性能提升且不增加推理耗时的措施,取得了更佳的性能(49.5%m...

    Color Space
  • PP-YOLO何许模型?竟然超越了YOLOv4

    PP-YOLO评估指标显示出比现有的最新对象检测模型YOLOv4更高的性能。但是,提出者百度却谦虚的声明:

    小白学视觉
  • YOLO 算法最全综述:从 YOLOv1 到 YOLOv5

    YOLO系列是基于深度学习的回归方法,本文详细介绍了从YOLOv1至最新YOLOv5五种方法的主要思路、改进策略以及优缺点。

    公众号机器学习与生成对抗网络
  • YOLO算法最全综述:从YOLOv1到YOLOv5

    来源丨https://zhuanlan.zhihu.com/p/136382095

    Datawhale
  • 深入浅出Yolo系列之Yolox核心基础完整讲解

    在Yolov4、Yolov5刚出来时,大白就写过关于Yolov3、Yolov4、Yolov5的文章,并且做了一些讲解的视频,反响都还不错。

    AIWalker
  • Yolo发展史(v4/v5的创新点汇总!)

    作者总结了近几年的单阶段和双阶段的目标检测算法以及技巧,并用一个图概括了单阶段和双阶段目标检测网络的差别,two-stage的检测网络,相当于在one-stag...

    灿视学长
  • YOLOv5被禁用!Kaggle全球小麦检测竞赛结果惹争议

    昨天Kaggle 全球小麦检测(Global Wheat Detection)比赛落下帷幕,共计2,270 支队伍参赛。

    Amusi
  • YOLOv5是真的吗?并不比YOLOv4强,不配这个名字

    是不是超厉害?这不正表明我们的研究和科技发展速度超快吗?毕竟这个广受欢迎的目标检测框架的新一代 v4 版本刚发布不久,下一代 v5 版本就横空出世了。YOLOv...

    机器之心
  • 利用卡尺工具进行损伤检测

    threeQing
  • 实用目标检测器 | 性能超YoloV5,推理耗时不变(附github源码)

    在实际应用场景中,有效性与高效性对于目标检测器非常重要。为了满足这两个问题,研究者全面评估了现有的改进的集合,以提高PP-YOLO的性能,同时几乎保持推理时间不...

    3D视觉工坊
  • 干货 | YOLOV5 训练自动驾驶数据集,并转Tensorrt,收藏!

    BDD100K是最大的开放式驾驶视频数据集之一,其中包含10万个视频和10个任务,目的是方便评估自动驾驶图像识别算法的的进展。每个高分辨率视频一共40秒。该数据...

    机器视觉CV
  • 使用 YOLO v5 进行目标检测

    一般来说,分类技术在自动驾驶汽车中没有多大帮助,因为它只预测图像中的一个对象,并且不给出该图像的位置。而目标检测在自动驾驶汽车中非常重要,可以检测场景中的对象及...

    deephub
  • YOLOv5它来了!YOLOv4发布不到50天,它带着推理速度140帧/秒、性能提升2倍来了

    6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!

    量子位
  • 自动路损检测器

    损坏的道路对市民的出行有一定的影响。对市政府来说,检测和确定要修复的道路是一项巨大挑战。在美国,大多数州仅仅采用半自动方法进行道路损坏的检测,而在世界其它地区这...

    小白学视觉

扫码关注云+社区

领取腾讯云代金券