前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Go gomaxprocs 调高引起调度性能损耗

Go gomaxprocs 调高引起调度性能损耗

作者头像
梦醒人间
发布2021-07-16 11:13:28
1.9K0
发布2021-07-16 11:13:28
举报
文章被收录于专栏:码农桃花源

先前在社区里分享了关于 golang 行情推送[1]的分享,有人针对 ppt 的内容问了我两个问题,一个是在 docker 下 golang 的 gomaxprocs 初始化混乱问题,另一个是 golang runtime.gomaxprocs 配置多少为合适?

golang runtime

Golang 的 runtime 调度是依赖 pmg 的角色抽象,p 为逻辑处理器,m 为执行体(线程),g 为协程。p 的 runq 队列中放着可执行的 goroutine 结构。golang 默认 p 的数量为 cpu core 数目,比如物理核心为 8 cpu core,那么 go processor 的数量就为 8。另外,同一时间一个 p 只能绑定一个 m 线程,pm 绑定后自然就找 g 和运行 g。

那么增加 processor 的数量,是否可以用来加大 runtime 对于协程的调度吞吐?

大多 golang 的项目偏重网络 io,network io 在 netpoll 设计下都是非阻塞的,所涉及到的 syscall 不会阻塞。如果是 cpu 密集的业务,增加多个 processor 也没用,毕竟 cpu 计算资源就这些,居然还想着来回的切换?? 所以,多数场景下单纯增加 processor 是没什么用的。

当然,话不绝对,如果你的逻辑含有不少的 cgo 及阻塞 syscall 的操作,那么增加 processor 还是有效果的,最少在我实际项目中有效果。原因是这类操作有可能因为过慢引起阻塞,在阻塞期间的 p 被 mg 绑定一起,其他 m 无法获取 p 的所有权。虽然在 findrunnable steal 机制里,其他 p 的 m 可以偷该 p 的任务,但在解绑 p 之前终究还是少了一条并行通道。另外,runtime 的 sysmon 周期性的检查长时间阻塞的 pmg, 并抢占并解绑 p。

golang 在 docker 下的问题

在微服务体系下服务的部署通常是放在 docker 里的。一个宿主机里跑着大量的不同服务的容器。为了避免资源冲突,通常会合理地对每个容器做 cpu 资源控制。比如给一个 golang 服务的容器限定了 2 cpu core 的资源,容器内的服务不管怎么折腾,也确实只能用到大约 2 个 cpu core 的资源。

但 golang 初始化 processor 数量是依赖 /proc/cpuinfo 信息的,容器内的 cpuinfo 是跟宿主机一致的,这样导致容器只能用到 2 个 cpu core,但 golang 初始化了跟物理 cpu core 相同数量的 processor。

代码语言:javascript
复制
// xiaorui.cc

限制2核左右
root@xiaorui.cc:~# docker run -tid --cpu-period 100000 --cpu-quota 200000 ubuntu

容器内
root@a4f33fdd0240:/# cat /proc/cpuinfo| grep "processor"| wc -l
48

runtime processor 多了会出现什么问题?

一个是 runtime findrunnable 时产生的损耗,另一个是线程引起的上下文切换。

runtime 的 findrunnable 方法是解决 m 找可用的协程的函数,当从绑定 p 本地 runq 上找不到可执行的 goroutine 后,尝试从全局链表中拿,再拿不到从 netpoll 和事件池里拿,最后会从别的 p 里偷任务。全局 runq 是有锁操作,其他偷任务使用了 atomic 原子操作来规避 futex 竞争下陷入切换等待问题,但 lock free 在竞争下也会有忙轮询的状态,比如不断的尝试。

代码语言:javascript
复制
// xiaorui.cc

// 全局 runq
if sched.runqsize != 0 {
    lock(&sched.lock)
    gp := globrunqget(_p_, 0)
    unlock(&sched.lock)
    if gp != nil {
        return gp, false
    }
}
...

// 尝试4次从别的p偷任务
 for i := 0; i < 4; i++ {
    for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() {
        if sched.gcwaiting != 0 {
            goto top
        }
        stealRunNextG := i > 2 // first look for ready queues with more than 1 g
        if gp := runqsteal(_p_, allp[enum.position()], stealRunNextG); gp != nil {
            return gp, false
        }
    }
}
...

通过 godebug 可以看到全局队列及各个 p 的 runq 里等待调度的任务量。有不少 p 是空的,那么势必会引起 steal 偷任务。另外,runqueue 的大小远超其他 p 的总和,说明大部分任务在全局里,全局又是把大锁。

随着调多 runtime processor 数量,相关的 m 线程自然也就跟着多了起来。linux 内核为了保证可执行的线程在调度上雨露均沾,按照内核调度算法来切换就绪状态的线程,切换又引起上下文切换。上下文切换也是性能的一大杀手。findrunnable 的某些锁竞争也会触发上下文切换。

下面是我这边一个行情推送服务压测下的 vmstat 监控数据。首先把容器的的 cpu core 限制为 8,再先后测试 processor 为 8 和 48 的情况。图的上面是 processor 为 8 的情况,下面为 processor 为 48 的情况。看图可以直观地发现当 processor 调大后,上下文切换(cs)明显多起来,另外等待调度的线程也多了。

另外从 qps 的指标上也可以反映多 processor 带来的性能损耗。通过下图可以看到当 runtime.GOMAXPROCS 为固定的 cpu core 数时,性能最理想。后面随着 processor 数量的增长,qps 指标有所下降。

通过 golang tool trace 可以分析出协程调度等待时间越来越长了。

解决 docker 下的 golang gomaxprocs 校对问题

有两个方法可以准确校对 golang 在 docker 的 cpu 获取问题。

要么在 k8s pod 里加入 cpu 限制的环境变量,容器内的 golang 服务在启动时获取关于 cpu 的信息。

要么解析 cpu.cfs_period_us 和 cpu.cfs_quota_us 配置来计算 cpu 资源。社区里有不少这类的库可以使用,uber的automaxprocs[2]可以兼容 docker 的各种 cpu 配置。

总结

建议 gomaxprocs 配置为 cpu core 数量就可以了,Go 默认就是这个配置,无需再介入。如果涉及到阻塞 syscall,可以适当的调整 gomaxprocs 大小,但一定要用指标数据说话!

参考资料

[1]

行情推送: http://xiaorui.cc/?p=6250

[2]

automaxprocs: https://github.com/uber-go/automaxprocs

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-06-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 码农桃花源 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • golang runtime
  • golang 在 docker 下的问题
  • runtime processor 多了会出现什么问题?
  • 解决 docker 下的 golang gomaxprocs 校对问题
  • 总结
    • 参考资料
    相关产品与服务
    容器镜像服务
    容器镜像服务(Tencent Container Registry,TCR)为您提供安全独享、高性能的容器镜像托管分发服务。您可同时在全球多个地域创建独享实例,以实现容器镜像的就近拉取,降低拉取时间,节约带宽成本。TCR 提供细颗粒度的权限管理及访问控制,保障您的数据安全。
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档