专栏首页飞天小牛肉携程二面:讲讲 MySQL 中的 WAL 策略和 CheckPoint 技术

携程二面:讲讲 MySQL 中的 WAL 策略和 CheckPoint 技术

前段时间我在准备暑期实习嘛,这是当时面携程的时候二面的一道问题,我一脸懵逼,赶紧道歉,不好意思不知道没了解过,面试官又解释说 redo log,我寻思着 redo log 我知道啊,WAL 是啥?给面试官整无语了(滑稽),为我当时的无知道歉。后来回去百度了一下才知道,最近又在丁奇大佬的《MySQL 实战 45 讲》 中看到了 WAL,遂来写篇文章总结下。

InnoDB 体系架构

在说 WAL 之前,有必要简单介绍下 InnoDB 存储引擎的体系架构,方便我们理解下文,并且 redo log 也是 InnoDB 存储引擎所特有的

如下图,InnoDB 存储引擎由内存池和一些后台线程组成:

内存池

先来解释下内存池。

首先,我们需要知道,InnoDB 存储引擎是基于磁盘存储的,并将其中的记录按照的方式进行管理。因此可将其视为基于磁盘的数据库系统(Disk-base Database),在这样的系统中,众所周知,由于 CPU 速度与磁盘速度之间的不匹配,通常会使用缓冲池技术来提高数据库的整体性能。

所以这里的内存池也被称为缓冲池(简单理解为缓存就好了)。

具体来说,缓冲池其实就是一块内存区域,在 CPU 与磁盘之间加入内存访问,通过内存的速度来弥补磁盘速度较慢对数据库性能的影响。

拥有了缓冲池后,“读取页” 操作的具体步骤就是这样的:

  • 首先将从磁盘读到的页存放在缓冲池中
  • 下一次再读相同的页时,首先判断该页是否在缓冲池中。若在缓冲池中,称该页在缓冲池中被命中,直接读取该页。否则,读取磁盘上的页。

“修改页” 操作的具体步骤就是这样的:

  • 首先修改在缓冲池中的页;然后再以一定的频率刷新到磁盘上。

所谓 ”脏页“ 就发生在修改这个操作中,如果缓冲池中的页已经被修改了,但是还没有刷新到磁盘上,那么我们就称缓冲池中的这页是 ”脏页“,即缓冲池中的页的版本要比磁盘的新。

至此,综上所述,我们可以得出这样的结论:缓冲池的大小直接影响着数据库的整体性能

后台线程

后台线程其实最大的作用就是用来完成 “将从磁盘读到的页存放在缓冲池中” 以及 “将缓冲池中的数据以一定的频率刷新到磁盘上” 这俩个操作的,当然了,还有其他的作用。以下是《MySQL 技术内幕:InnoDB 存储引擎 - 第 2 版》对于后台线程的描述:

后台线程的主要作用就是刷新内存池中的数据,保证内存池中缓存的是最近的数据;此外将已修改的数据文件刷新到磁盘文件,同时保证在数据库发生异常的情况下 InnoDB 能恢复到正常运行状态。

另外,InnoDB 存储引擎是多线程的模型,也就是说它拥有多个不同的后台线程,负责处理不同的任务。这里简单列举下几种不同的后台线程:

  • Master Thread:主要负责将缓冲池中的数据异步刷新到磁盘,保证数据的一致性
  • IO Thread:在 InnoDB 存储引擎中大量使用了 AIO(Async IO)来处理写 IO 请求,这样可以极大提高数据库的性能。IO Thread 的工作主要是负责这些 IO 请求的回调(call back)处理
  • Purge Thread:回收已经使用并分配的 undo 页
  • Page Cleaner Thread:将之前版本中脏页的刷新操作都放入到单独的线程中来完成。其目的是为了减轻原 Master Thread 的工作及对于用户查询线程的阻塞,进一步提高 InnoDB 存储引擎的性能

redo log 与 WAL 策略

上文我们提到,当缓冲池中的某页数据被修改后,该页就被标记为 ”脏页“,脏页的数据会被定期刷新到磁盘上。

倘若每次一个页发生变化,就将新页的版本刷新到磁盘,那么这个开销是非常大的。并且,如果热点数据都集中在某几个页中,那么数据库的性能将变得非常差。另外,如果在从缓冲池将页的新版本刷新到磁盘时发生了宕机,那么这个数据就不能恢复了。

所以,为了避免发生数据丢失的问题,当前事务数据库系统(并非 MySQL 所独有)普遍都采用了 WAL(Write Ahead Log预写日志)策略:即当事务提交时,先写重做日志(redo log),再修改页(先修改缓冲池,再刷新到磁盘);当由于发生宕机而导致数据丢失时,通过 redo log 来完成数据的恢复。这也是事务 ACID 中 D(Durability 持久性)的要求。

有了 redo log,InnoDB 就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为 crash-safe

举个简单的例子,假设你非常热心且 rich 的,借出去了很多钱,但是你非常 old school,不会使用电子设备并且记性不太好,所以你用一个小本本记下了所有欠你钱的人的名字和具体金额。这样,别人还你钱的时候,你就翻出你的小本本,一页页地找到他的名字然后把这次还的钱扣除掉。

但是呢,其实你平常是非常忙碌的,没办法随时随地翻小本本做记录,因此你就想出了一个主意:每当有人还你钱的时候,你就在一张白纸上记下来,然后挑个时间对照小本本把白纸上的账目都给清了。

这就是 WAL。白纸就是 redo log,小本本就是磁盘。

当然了,redo log 可不是白纸这么简单,一张用完了换一张就行了,这里有必要详细解释下。

每个 InnoDB 存储引擎至少有 1 个重做日志文件组( redo log group),每个文件组下至少有 2 个重做日志文件(redo log file),默认的话是一个 redo log group,其中包含 2 个 redo log file:ib_logfile0ib_logfile1

一般来说,为了得到更高的可靠性,用户可以设置多个镜像日志组(mirrored log groups),将不同的文件组放在不同的磁盘上,以此提高 redo log 的高可用性。在日志组中每个 redo log file 的大小一致,并以循环写入的方式运行。

所谓循环写入,也就是为啥我们说 redo log 不像白纸那样用完一张换一张就行,举个例子,如下图,一个 redo log group,包含 3 个 redo log file:

InnoDB 存储引擎会先写 redo log file 0,当 file 0 被写满的时候,会切换至 redo log file 1,当 file 1 也被写满时,会切换到 redo log file 2 中,而当 file 2 也被写满时,会再切换到 file 0 中。

可以看出,redo log file 的大小设置对于 InnoDB 存储引擎的性能有着非常大的影响:

  • redo log file 不能设置得太大,如果设置得很大,在恢复时可能需要很长的时间
  • redo log file 又不能设置得太小了,否则可能导致一个事务的日志需要多次切换重做日志文件

CheckPoint 技术

有了 redo log 就可以高枕无忧了吗?显然不是这么简单,我们仍然面临这样 3 个问题:

1)缓冲池不是无限大的,也就是说不能没完没了的存储我们的数据等待一起刷新到磁盘

2)redo log 是循环使用而不是无限大的(也许可以,但是成本太高,同时不便于运维),那么当所有的 redo log file 都写满了怎么办?

3)当数据库运行了几个月甚至几年时,这时如果发生宕机,重新应用 redo log 的时间会非常久,此时恢复的代价将会非常大。

因此 Checkpoint 技术的目的就是解决上述问题:

  • 缓冲池不够用时,将脏页刷新到磁盘
  • redo log 不可用时,将脏页刷新到磁盘
  • 缩短数据库的恢复时间

所谓 CheckPoint 技术简单来说其实就是在 redo log file 中找到一个位置,将这个位置前的页都刷新到磁盘中去,这个位置就称为 CheckPoint(检查点)。

针对上面这三点我们依次来解释下:

1)缩短数据库的恢复时间:当数据库发生宕机时,数据库不需要重做所有的日志,因为 Checkpoint 之前的页都已经刷新回磁盘。故数据库只需对 Checkpoint 后的 redo log 进行恢复就行了。这显然大大缩短了恢复的时间。

2)缓冲池不够用时,将脏页刷新到磁盘:所谓缓冲池不够用的意思就是缓冲池的空间无法存放新读取到的页,这个时候 InnoDB 引擎会怎么办呢?LRU 算法。InnoDB 存储引擎对传统的 LRU 算法做了一些优化,用其来管理缓冲池这块空间。

总的思路还是传统 LRU 那套,具体的优化细节这里就不再赘述了:即最频繁使用的页在 LRU 列表(LRU List)的前端,最少使用的页在 LRU 列表的尾端;当缓冲池的空间无法存放新读取到的页时,将首先释放 LRU 列表中尾端的页。这个被释放出来(溢出)的页,如果是脏页,那么就需要强制执行 CheckPoint,将脏页刷新到磁盘中去。

3)redo log 不可用时,将脏页刷新到磁盘

所谓 redo log 不可用就是所有的 redo log file 都写满了。但事实上,其实 redo log 中的数据并不是时时刻刻都是有用的,那些已经不再需要的部分就称为 ”可以被重用的部分“,即当数据库发生宕机时,数据库恢复操作不需要这部分的 redo log,因此这部分就可以被覆盖重用(或者说被擦除)。

举个例子来具体解释下:一组 4 个文件,每个文件的大小是 1GB,那么总共就有 4GB 的 redo log file 空间。write pos 是当前 redo log 记录的位置,随着不断地写入磁盘,write pos 也不断地往后移,就像我们上文说的,写到 file 3 末尾后就回到 file 0 开头。CheckPoint 是当前要擦除的位置(将 Checkpoint 之前的页刷新回磁盘),也是往后推移并且循环的:

write pos 和 CheckPoint 之间的就是 redo log file 上还空着的部分,可以用来记录新的操作。如果 write pos 追上 CheckPoint,就表示 redo log file 满了,这时候不能再执行新的更新,得停下来先覆盖(擦掉)一些 redo log,把 CheckPoint 推进一下。

综上所述,Checkpoint 所做的事情无外乎是将缓冲池中的脏页刷新到磁盘。不同之处在于每次刷新多少页到磁盘,每次从哪里取脏页,以及什么时间触发 Checkpoint。在 InnoDB 存储引擎内部,有两种 Checkpoint,分别为:

  • Sharp Checkpoint:发生在数据库关闭时将所有的脏页都刷新回磁盘,这是默认的工作方式,参数 innodb_fast_shutdown=1
  • Fuzzy Checkpoin:InnoDB 存储引擎内部使用这种模式,只刷新一部分脏页,而不是刷新所有的脏页回磁盘。关于 Fuzzy CheckPoint 具体的情况这里就不再赘述了。

有了 bin log 为什么还需要 redo log?

前文我们讲过,MySQL 架构可以分成俩层,一层是 Server 层,它主要做的是 MySQL 功能层面的事情;另一层就是存储引擎,负责存储与提取相关的具体事宜。

redo log 是 InnoDB 引擎特有的日志,而 Server 层也有自己的日志,包括错误日志(error log)、二进制日志(binlog)、慢查询日志(slow query log)、查询日志(log)。

其他三个日志顾明思意都挺好理解的,需要解释的就是 binlog(二进制日志,binary log),它记录了对 MySQL 数据库执行更改的所有操作,但是不包括 SELECTSHOW 这类操作,因为这类操作对数据本身并没有修改。也就是说,binlog 是逻辑日志,记录的是这个语句的原始逻辑,比如 “给 ID=1 这一行的 a 字段加 1”。

可以看出来,binlog 日志只能用于归档,因此 binlog 也被称为归档日志,显然如果 MySQL 只依靠 binlog 等这四种日志是没有 crash-safe 能力的,所以为了弥补这种先天的不足,得益于 MySQL 可插拔的存储引擎架构,InnoDB 开发了另外一套日志系统 — 也就是 redo log 来实现 crash-safe 能力。

这就是为什么有了 bin log 为什么还需要 redo log 的答案。

回顾下 redo log 存储的东西,可以发现 redo log 是物理日志,记录的是 “在某个数据页上做了什么修改”。

另外,还有一点不同的是:binlog 是追加写入的,就是说 binlog 文件写到一定大小后会切换到下一个,并不会覆盖以前的日志;而 redo log 是循环写入的。

本文分享自微信公众号 - 飞天小牛肉(CS-Wiki),作者:飞天小牛肉

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2021-06-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 讲讲 MySQL 中的 WAL 策略和 CheckPoint 技术

    在说 WAL 之前,有必要简单介绍下 InnoDB 存储引擎的体系架构,方便我们理解下文,并且 redo log 也是 InnoDB 存储引擎所特有的。

    用户1263954
  • 你常听说的WAL到底是什么

    WAL(Write Ahead Log)预写日志,是数据库系统中常见的一种手段,用于保证数据操作的原子性和持久性。

    码哥字节
  • POSTGRESQL WAL 机制理解

    最近和POSTGRESQL 较劲的多,如果能更多的理解POSTGRESQL 的工作原理,并且深入分析,对日后的管理和适用会比较有帮助,多学点是没有坏处的,并且P...

    AustinDatabases
  • Mysql学习笔记【日志】

    RedoLog是重要日志,是InnoDB用来做事务持久化的日志。他主要记录了事务在某个数据页上具体做了什么。它可以实现事务的crash-safe

    秦穆之
  • 一文告诉你SparkStreaming如何整合Kafka!

    关于SparkStreaming从理论到实战的部分,博主已经在前面的博客中介绍了。本篇博客,为大家带来的是SparkStreaming整合Kaf...

    大数据梦想家
  • MySQL探秘(四):InnoDB的磁盘文件及落盘机制

     任何一个技术都有其底层的关键基础技术,这些关键技术很有可能也是其他技术的关键技术,学习这些底层技术,就可以一通百通,让你很快的掌握其他技术。如何在磁盘上存储数...

    程序员历小冰
  • MySQL探秘(四):InnoDB的磁盘文件及落盘机制

     任何一个技术都有其底层的关键基础技术,这些关键技术很有可能也是其他技术的关键技术,学习这些底层技术,就可以一通百通,让你很快的掌握其他技术。如何在磁盘上存储数...

    程序员历小冰
  • WCDB 的 WAL 模式和异步 Checkpoint

    通过 A/B Test,最终相比传统 Rollback 模式写耗时减少 70% 以上,还稍稍降低了 DB 损坏率。

    微信终端开发团队
  • --POSTGRESQL FULL PAGE 优化 与 CHECKPOINT 的“矛盾”!

    在说完mysql 不要关DW 后,祭出 POSTGRESQL FULL PAGE 的确是有点不厚道,所以必然会引出 FULL PAGE 也存在性能问题的话题。到...

    AustinDatabases
  • pg_wal发展史

    WAL日志是Postgres何其重要的一个部分,它活跃在Postgres的各个功能模块,绝大多数的数据库行为都会被记录在WAL日志中。正因为如此我们可以把WAL...

    DB之路
  • MySQL深入学习第十二篇-为什么我的MySQL会“抖”一下?

    平时的工作中,不知道你有没有遇到过这样的场景,一条 SQL 语句,正常执行的时候特别快,但是有时也不知道怎么回事,它就会变得特别慢,并且这样的场景很难复现,它不...

    越陌度阡
  • 史上最强解读:Oracle里面为什么没有double write?

    导读:MySQL有double write机制,PostgreSQL有full page write机制,那么Oracle里面为什么没有类似机制呢?

    数据和云
  • 史上最全PostgreSQL体系结构

    墨墨导读:本文主要从日志文件、参数文件、控制文件、数据文件、redo日志(WAL)、后台进程这六个方面来讨论PostgreSQL的结构。

    数据和云
  • SQLite这么娇小可爱,不多了解点都不行啊

    简介 SQLite,是一款轻型的数据库,是遵守ACID的关系型数据库管理系统。它的设计目标是嵌入式的,目前Android和iOS的设备内置的都是SQLite数...

    小小科
  • MySQL的两个日志系统

    MySQL中有两个重要的日志模块,分别是redo log(重做日志)和binlog(归档日志)。当我们学习MySQL的时候,这两部分内容是绕不开的,本文我将来详...

    故里
  • 听我讲完redo log、binlog原理,面试官老脸一红

      我有一个老朋友,我们叫他熊猫。发际线及将触碰到后脑勺,大框金丝眼镜也掩盖不住那黝黑的眼圈,显得格外的“程序员”;穿着也非常不拘一格,上半身是衬衣西服,下半身...

    陈哈哈
  • 预写式日志(Write-Ahead Logging (WAL))

         SQL Server中使用了WAL(Write-Ahead Logging)技术来保证事务日志的ACID特性。而且大大减少了IO操作。      WA...

    用户1217611
  • SQLite 预写式日志

          SQLite在3.7.0版本引入了WAL (Write-Ahead-Logging),WAL的全称是Write Ahead Logging,它是很多...

    张善友
  • 什么是WAL?

    在写完上一篇《Pull or Push》之后,原本计划这一片写《存储层设计》,但是临时改变主意了,想先写一篇介绍一下消息中间件最最基础也是最核心的部分:writ...

    林一

扫码关注云+社区

领取腾讯云代金券