前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >CoProcessFunction实战三部曲之三:定时器和侧输出

CoProcessFunction实战三部曲之三:定时器和侧输出

原创
作者头像
程序员欣宸
修改2021-07-27 11:02:55
2850
修改2021-07-27 11:02:55
举报
文章被收录于专栏:实战docker实战docker

欢迎访问我的GitHub

这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos

系列文章链接

  1. 基本功能
  2. 状态处理
  3. 定时器和侧输出

本篇概览

  • 本文是《CoProcessFunction实战三部曲》的终篇,主要内容是在CoProcessFunction中使用定时器和侧输出,对上一篇的功能进行增强;
  • 回顾上一篇的功能:一号流收到aaa后保存在状态中,直到二号流收到aaa,把两个aaa的值相加后输出到下游;
  • 上述功能有个问题:二号流如果一直收不到aaa,下游就一直没有aaa的输出,相当于进入一号流的aaa已经石沉大海了;
  • 今天的实战就是修复上述问题:aaa在一个流中出现后,10秒之内如果出现在另一个流中,就像以前那样值相加,输出到下游,如果10秒内没有出现在另一个流,就流向侧输出,再将所有状态清理干净;

参考文章

梳理流程

  • 为了编码的逻辑正确,咱们把正常和异常的流程先梳理清楚;
  • 下图是正常流程:aaa在一号流出现后,10秒内又在二号流出现了,于是相加并流向下游:
在这里插入图片描述
在这里插入图片描述
  • 再来看异常的流程,如下图,一号流在16:14:01收到aaa,但二号流一直没有收到aaa,等到10秒后,也就是16:14:11,定时器被触发,从状态1得知10秒前一号流收到过aaa,于是将数据流向一号侧输出:
在这里插入图片描述
在这里插入图片描述
  • 接下来编码实现上面的功能;

源码下载

如果您不想写代码,整个系列的源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):

名称

链接

备注

项目主页

该项目在GitHub上的主页

git仓库地址(https)

该项目源码的仓库地址,https协议

git仓库地址(ssh)

git@github.com:zq2599/blog_demos.git

该项目源码的仓库地址,ssh协议

这个git项目中有多个文件夹,本章的应用在flinkstudy文件夹下,如下图红框所示:

在这里插入图片描述
在这里插入图片描述

CoProcessFunction的子类

  • 前面的两篇实战中,CoProcessFunction的子类都写成了匿名类,如下图红框:
在这里插入图片描述
在这里插入图片描述
  • 本文中,CoProcessFunction子类会用到外部类的成员变量,因此不能再用匿名类了,新增CoProcessFunction的子类ExecuteWithTimeoutCoProcessFunction.java,稍后会说明几个关键点:
代码语言:txt
复制
package com.bolingcavalry.coprocessfunction;

import com.bolingcavalry.Utils;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.co.CoProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 实现双流业务逻辑的功能类
 */
public class ExecuteWithTimeoutCoProcessFunction extends CoProcessFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>> {

    private static final Logger logger = LoggerFactory.getLogger(ExecuteWithTimeoutCoProcessFunction.class);

    /**
     * 等待时间
     */
    private static final long WAIT_TIME = 10000L;

    public ExecuteWithTimeoutCoProcessFunction(OutputTag<String> source1SideOutput, OutputTag<String> source2SideOutput) {
        super();
        this.source1SideOutput = source1SideOutput;
        this.source2SideOutput = source2SideOutput;
    }

    private OutputTag<String> source1SideOutput;

    private OutputTag<String> source2SideOutput;

    // 某个key在processElement1中存入的状态
    private ValueState<Integer> state1;

    // 某个key在processElement2中存入的状态
    private ValueState<Integer> state2;

    // 如果创建了定时器,就在状态中保存定时器的key
    private ValueState<Long> timerState;

    // onTimer中拿不到当前key,只能提前保存在状态中(KeyedProcessFunction的OnTimerContext有API可以取到,但是CoProcessFunction的OnTimerContext却没有)
    private ValueState<String> currentKeyState;

    @Override
    public void open(Configuration parameters) throws Exception {
        // 初始化状态
        state1 = getRuntimeContext().getState(new ValueStateDescriptor<>("myState1", Integer.class));
        state2 = getRuntimeContext().getState(new ValueStateDescriptor<>("myState2", Integer.class));
        timerState = getRuntimeContext().getState(new ValueStateDescriptor<>("timerState", Long.class));
        currentKeyState = getRuntimeContext().getState(new ValueStateDescriptor<>("currentKeyState", String.class));
    }

    /**
     * 所有状态都清理掉
     */
    private void clearAllState() {
        state1.clear();
        state2.clear();
        currentKeyState.clear();
        timerState.clear();
    }

    @Override
    public void processElement1(Tuple2<String, Integer> value, Context ctx, Collector<Tuple2<String, Integer>> out) throws Exception {
        logger.info("processElement1:处理元素1:{}", value);

        String key = value.f0;

        Integer value2 = state2.value();

        // value2为空,就表示processElement2还没有处理或这个key,
        // 这时候就把value1保存起来
        if(null==value2) {
            logger.info("processElement1:2号流还未收到过[{}],把1号流收到的值[{}]保存起来", key, value.f1);
            state1.update(value.f1);

            currentKeyState.update(key);

            // 开始10秒的定时器,10秒后会进入
            long timerKey = ctx.timestamp() + WAIT_TIME;
            ctx.timerService().registerProcessingTimeTimer(timerKey);
            // 保存定时器的key
            timerState.update(timerKey);
            logger.info("processElement1:创建定时器[{}],等待2号流接收数据", Utils.time(timerKey));
        } else {
            logger.info("processElement1:2号流收到过[{}],值是[{}],现在把两个值相加后输出", key, value2);

            // 输出一个新的元素到下游节点
            out.collect(new Tuple2<>(key, value.f1 + value2));

            // 删除定时器(这个定时器应该是processElement2创建的)
            long timerKey = timerState.value();
            logger.info("processElement1:[{}]的新元素已输出到下游,删除定时器[{}]", key, Utils.time(timerKey));
            ctx.timerService().deleteProcessingTimeTimer(timerKey);

            clearAllState();
        }
    }

    @Override
    public void processElement2(Tuple2<String, Integer> value, Context ctx, Collector<Tuple2<String, Integer>> out) throws Exception {
        logger.info("processElement2:处理元素2:{}", value);

        String key = value.f0;

        Integer value1 = state1.value();

        // value1为空,就表示processElement1还没有处理或这个key,
        // 这时候就把value2保存起来
        if(null==value1) {
            logger.info("processElement2:1号流还未收到过[{}],把2号流收到的值[{}]保存起来", key, value.f1);
            state2.update(value.f1);

            currentKeyState.update(key);

            // 开始10秒的定时器,10秒后会进入
            long timerKey = ctx.timestamp() + WAIT_TIME;
            ctx.timerService().registerProcessingTimeTimer(timerKey);
            // 保存定时器的key
            timerState.update(timerKey);
            logger.info("processElement2:创建定时器[{}],等待1号流接收数据", Utils.time(timerKey));
        } else {
            logger.info("processElement2:1号流收到过[{}],值是[{}],现在把两个值相加后输出", key, value1);

            // 输出一个新的元素到下游节点
            out.collect(new Tuple2<>(key, value.f1 + value1));

            // 删除定时器(这个定时器应该是processElement1创建的)
            long timerKey = timerState.value();
            logger.info("processElement2:[{}]的新元素已输出到下游,删除定时器[{}]", key, Utils.time(timerKey));
            ctx.timerService().deleteProcessingTimeTimer(timerKey);

            clearAllState();
        }
    }

    @Override
    public void onTimer(long timestamp, OnTimerContext ctx, Collector<Tuple2<String, Integer>> out) throws Exception {
        super.onTimer(timestamp, ctx, out);

        String key = currentKeyState.value();

        // 定时器被触发,意味着此key只在一个中出现过
        logger.info("[{}]的定时器[{}]被触发了", key, Utils.time(timestamp));

        Integer value1 = state1.value();
        Integer value2 = state2.value();

        if(null!=value1) {
            logger.info("只有1号流收到过[{}],值为[{}]", key, value1);
            // 侧输出
            ctx.output(source1SideOutput, "source1 side, key [" + key+ "], value [" + value1 + "]");
        }

        if(null!=value2) {
            logger.info("只有2号流收到过[{}],值为[{}]", key, value2);
            // 侧输出
            ctx.output(source2SideOutput, "source2 side, key [" + key+ "], value [" + value2 + "]");
        }

        clearAllState();
    }
}
  • 关键点之一:新增状态timerState,用于保存定时器的key;
  • 关键点之二:CoProcessFunction的onTimer中拿不到当前key(KeyedProcessFunction可以,其OnTimerContext类提供了API),因此新增状态currentKeyState,这样在onTimer中就知道当前key了;
  • 关键点之三:processElement1中,处理aaa时, 如果2号流还没收到过aaa,就存入状态,并启动10秒定时器;
  • 关键点之四:processElement2处理aaa时,发现1号流收到过aaa,就相加再输出到下游,并且删除processElement1中创建的定时器,aaa相关的所有状态也全部清理掉;
  • 关键点之五:如果10秒内aaa在两个流中都出现过,那么一定会流入下游并且定时器会被删除,因此,一旦onTimer被执行,意味着aaa只在一个流中出现过,而且已经过去10秒了,此时在onTimer中可以执行流向侧输出的操作;
  • 以上就是双流处理的逻辑和代码,接下来编写AbstractCoProcessFunctionExecutor的子类;

业务执行类AddTwoSourceValueWithTimeout

  • 负责执行整个功能的,是抽象类AbstractCoProcessFunctionExecutor的子类,如下,稍后会说明几个关键点:
代码语言:txt
复制
package com.bolingcavalry.coprocessfunction;

import com.bolingcavalry.Utils;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks;
import org.apache.flink.streaming.api.functions.co.CoProcessFunction;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.util.OutputTag;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * @author will
 * @email zq2599@gmail.com
 * @date 2020-11-11 09:48
 * @description 将两个流中相通key的value相加,当key在一个流中出现后,
 *              会在有限时间内等待它在另一个流中出现,如果超过等待时间任未出现就在旁路输出
 */
public class AddTwoSourceValueWithTimeout extends AbstractCoProcessFunctionExecutor {

    private static final Logger logger = LoggerFactory.getLogger(AddTwoSourceValueWithTimeout.class);

    // 假设aaa流入1号源后,在2号源超过10秒没有收到aaa,那么1号源的aaa就会流入source1SideOutput
    final OutputTag<String> source1SideOutput = new OutputTag<String>("source1-sideoutput"){};

    // 假设aaa流入2号源后,如果1号源超过10秒没有收到aaa,那么2号源的aaa就会流入source2SideOutput
    final OutputTag<String> source2SideOutput = new OutputTag<String>("source2-sideoutput"){};

    /**
     * 重写父类的方法,保持父类逻辑不变,仅增加了时间戳分配器,向元素中加入时间戳
     * @param port
     * @return
     */
    @Override
    protected KeyedStream<Tuple2<String, Integer>, Tuple> buildStreamFromSocket(StreamExecutionEnvironment env, int port) {
        return env
                // 监听端口
                .socketTextStream("localhost", port)
                // 得到的字符串"aaa,3"转成Tuple2实例,f0="aaa",f1=3
                .map(new WordCountMap())
                // 设置时间戳分配器,用当前时间作为时间戳
                .assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks<Tuple2<String, Integer>>() {

                    @Override
                    public long extractTimestamp(Tuple2<String, Integer> element, long previousElementTimestamp) {
                        long timestamp = System.currentTimeMillis();
                        logger.info("添加时间戳,值:{},时间戳:{}", element, Utils.time(timestamp));
                        // 使用当前系统时间作为时间戳
                        return timestamp;
                    }

                    @Override
                    public Watermark getCurrentWatermark() {
                        // 本例不需要watermark,返回null
                        return null;
                    }
                })
                // 将单词作为key分区
                .keyBy(0);
    }

    @Override
    protected CoProcessFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>> getCoProcessFunctionInstance() {
        return new ExecuteWithTimeoutCoProcessFunction(source1SideOutput, source2SideOutput);
    }

    @Override
    protected void doSideOutput(SingleOutputStreamOperator<Tuple2<String, Integer>> mainDataStream) {
        // 两个侧输出都直接打印
        mainDataStream.getSideOutput(source1SideOutput).print();
        mainDataStream.getSideOutput(source2SideOutput).print();
    }

    public static void main(String[] args) throws Exception {
        new AddTwoSourceValueWithTimeout().execute();
    }
}
  • 关键点之一:增减成员变量source1SideOutputsource2SideOutput,用于侧输出;
  • 关键点之二:重写父类的buildStreamFromSocket方法,加了个时间戳分配器,这样每个元素都带有时间戳;
  • 关键点之三:重写父类的doSideOutput方法,这里面会把侧输出的数据打印出来;
  • 以上就是所有代码了,接下来开始验证;

验证(不超时的操作)

  • 分别开启本机的99989999端口,我这里是MacBook,执行nc -l 9998nc -l 9999
  • 启动Flink应用,如果您和我一样是Mac电脑,直接运行AddTwoSourceValueWithTimeout.main方法即可(如果是windows电脑,我这没试过,不过做成jar在线部署也是可以的);
  • 在监听9998端口的控制台输入aaa,1,此时flink控制台输出如下,可见processElement1方法中,读取state2为空,表示aaa在2号流还未出现过,此时的aaa是首次出现,应该放入state中保存,并且创建了定时器:
代码语言:txt
复制
18:18:10,472 INFO  AddTwoSourceValueWithTimeout  - 添加时间戳,值:(aaa,1),时间戳:2020-11-12 06:18:10
18:18:10,550 INFO  ExecuteWithTimeoutCoProcessFunction  - processElement1:处理元素1:(aaa,1)
18:18:10,550 INFO  ExecuteWithTimeoutCoProcessFunction  - processElement1:2号流还未收到过[aaa],把1号流收到的值[1]保存起来
18:18:10,553 INFO  ExecuteWithTimeoutCoProcessFunction  - processElement1:创建定时器[2020-11-12 06:18:20],等待2号流接收数据
  • 尽快在监听9999端口的控制台输入aaa,2,flink日志如下所示,可见相加后输出到下游,并且定时器也删除了:
代码语言:txt
复制
18:18:15,813 INFO  AddTwoSourceValueWithTimeout  - 添加时间戳,值:(aaa,2),时间戳:2020-11-12 06:18:15
18:18:15,887 INFO  ExecuteWithTimeoutCoProcessFunction  - processElement2:处理元素2:(aaa,2)
18:18:15,887 INFO  ExecuteWithTimeoutCoProcessFunction  - processElement2:1号流收到过[aaa],值是[1],现在把两个值相加后输出
(aaa,3)
18:18:15,888 INFO  ExecuteWithTimeoutCoProcessFunction  - processElement2:[aaa]的新元素已输出到下游,删除定时器[2020-11-12 06:18:20]

验证(超时的操作)

  • 前面试过了正常流程,再来试试超时流程是否符合预期;
  • 在监听9998端口的控制台输入aaa,1,然后等待十秒,flink控制台输出如下,可见定时器被触发,并且aaa流向了1号流的侧输出:
代码语言:txt
复制
18:23:37,393 INFO  AddTwoSourceValueWithTimeout - 添加时间戳,值:(aaa,1),时间戳:2020-11-12 06:23:37
18:23:37,417 INFO  ExecuteWithTimeoutCoProcessFunction - processElement1:处理元素1:(aaa,1)
18:23:37,417 INFO  ExecuteWithTimeoutCoProcessFunction - processElement1:2号流还未收到过[aaa],把1号流收到的值[1]保存起来
18:23:37,417 INFO  ExecuteWithTimeoutCoProcessFunction - processElement1:创建定时器[2020-11-12 06:23:47],等待2号流接收数据
18:23:47,398 INFO  ExecuteWithTimeoutCoProcessFunction - [aaa]的定时器[2020-11-12 06:23:47]被触发了
18:23:47,399 INFO  ExecuteWithTimeoutCoProcessFunction - 只有1号流收到过[aaa],值为[1]
source1 side, key [aaa], value [1]
  • 至此,CoProcessFunction实战三部曲已经全部完成了,希望这三次实战能够给您一些参考,帮您更快掌握和理解CoProcessFunction;

关于容器和镜像的环境

如果您不想自己搭建kubernetes环境,推荐使用腾讯云容器服务TKE:无需自建,即可在腾讯云上使用稳定, 安全,高效,灵活扩展的 Kubernetes 容器平台;

如果您希望自己的镜像可以通过外网上传和下载,推荐腾讯云容器镜像服务TCR:像数据加密存储,大镜像多节点快速分发,跨地域镜像同步

你不孤单,欣宸原创一路相伴

  1. Java系列
  2. Spring系列
  3. Docker系列
  4. kubernetes系列
  5. 数据库+中间件系列
  6. DevOps系列

欢迎关注公众号:程序员欣宸

微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界...

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 欢迎访问我的GitHub
  • 系列文章链接
  • 本篇概览
  • 参考文章
  • 梳理流程
  • 源码下载
  • CoProcessFunction的子类
  • 业务执行类AddTwoSourceValueWithTimeout
  • 验证(不超时的操作)
  • 验证(超时的操作)
  • 关于容器和镜像的环境
  • 你不孤单,欣宸原创一路相伴
  • 欢迎关注公众号:程序员欣宸
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档