前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Taking advantage of context features

Taking advantage of context features

原创
作者头像
XianxinMao
修改2021-07-31 18:06:41
2110
修改2021-07-31 18:06:41
举报
文章被收录于专栏:深度学习框架深度学习框架

In the featurization tutorial we incorporated multiple features beyond just user and movie identifiers into our models, but we haven't explored whether those features improve model accuracy.

Many factors affect whether features beyond ids are useful in a recommender model:

  1. Importance of context: if user preferences are relatively stable across contexts and time, context features may not provide much benefit. If, however, users preferences are highly contextual, adding context will improve the model significantly. For example, day of the week may be an important feature when deciding whether to recommend a short clip or a movie: users may only have time to watch short content during the week, but can relax and enjoy a full-length movie during the weekend. Similarly, query timestamps may play an important role in modelling popularity dynamics: one movie may be highly popular around the time of its release, but decay quickly afterwards. Conversely, other movies may be evergreens that are happily watched time and time again.
  2. Data sparsity: using non-id features may be critical if data is sparse. With few observations available for a given user or item, the model may struggle with estimating a good per-user or per-item representation. To build an accurate model, other features such as item categories, descriptions, and images have to be used to help the model generalize beyond the training data. This is especially relevant in cold-start situations, where relatively little data is available on some items or users.
代码语言:javascript
复制
import os
import tempfile
​
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
​
import tensorflow_recommenders as tfrs

We follow the featurization tutorial and keep the user id, timestamp, and movie title features.

代码语言:javascript
复制
ratings = tfds.load("movielens/100k-ratings", split="train")
movies = tfds.load("movielens/100k-movies", split="train")
​
ratings = ratings.map(lambda x: {
    "movie_title": x["movie_title"],
    "user_id": x["user_id"],
    "timestamp": x["timestamp"],
})
movies = movies.map(lambda x: x["movie_title"])

We also do some housekeeping to prepare feature vocabularies.

代码语言:javascript
复制
timestamps = np.concatenate(list(ratings.map(lambda x: x["timestamp"]).batch(100)))
​
max_timestamp = timestamps.max()
min_timestamp = timestamps.min()
​
timestamp_buckets = np.linspace(
    min_timestamp, max_timestamp, num=1000,
)
​
unique_movie_titles = np.unique(np.concatenate(list(movies.batch(1000))))
unique_user_ids = np.unique(np.concatenate(list(ratings.batch(1_000).map(
    lambda x: x["user_id"]))))

Model definition

Query model

We start with the user model defined in the featurization tutorial as the first layer of our model, tasked with converting raw input examples into feature embeddings. However, we change it slightly to allow us to turn timestamp features on or off. This will allow us to more easily demonstrate the effect that timestamp features have on the model. In the code below, the use_timestamps parameter gives us control over whether we use timestamp features.

代码语言:javascript
复制
class UserModel(tf.keras.Model):
​
  def __init__(self, use_timestamps):
    super().__init__()
​
    self._use_timestamps = use_timestamps
​
    self.user_embedding = tf.keras.Sequential([
        tf.keras.layers.experimental.preprocessing.StringLookup(
            vocabulary=unique_user_ids, mask_token=None),
        tf.keras.layers.Embedding(len(unique_user_ids) + 1, 32),
    ])
​
    if use_timestamps:
      self.timestamp_embedding = tf.keras.Sequential([
          tf.keras.layers.experimental.preprocessing.Discretization(timestamp_buckets.tolist()),
          tf.keras.layers.Embedding(len(timestamp_buckets) + 1, 32),
      ])
      self.normalized_timestamp = tf.keras.layers.experimental.preprocessing.Normalization()
​
      self.normalized_timestamp.adapt(timestamps)
​
  def call(self, inputs):
    if not self._use_timestamps:
      return self.user_embedding(inputs["user_id"])
​
    return tf.concat([
        self.user_embedding(inputs["user_id"]),
        self.timestamp_embedding(inputs["timestamp"]),
        self.normalized_timestamp(inputs["timestamp"]),
    ], axis=1)

Note that our use of timestamp features in this tutorial interacts with our choice of training-test split in an undesirable way. Because we have split our data randomly rather than chronologically (to ensure that events that belong to the test dataset happen later than those in the training set), our model can effectively learn from the future. This is unrealistic: after all, we cannot train a model today on data from tomorrow.

This means that adding time features to the model lets it learn future interaction patterns. We do this for illustration purposes only: the MovieLens dataset itself is very dense, and unlike many real-world datasets does not benefit greatly from features beyond user ids and movie titles.

This caveat aside, real-world models may well benefit from other time-based features such as time of day or day of the week, especially if the data has strong seasonal patterns.

Candidate model

For simplicity, we'll keep the candidate model fixed. Again, we copy it from the featurization tutorial:

代码语言:javascript
复制
class MovieModel(tf.keras.Model):
​
  def __init__(self):
    super().__init__()
​
    max_tokens = 10_000
​
    self.title_embedding = tf.keras.Sequential([
      tf.keras.layers.experimental.preprocessing.StringLookup(
          vocabulary=unique_movie_titles, mask_token=None),
      tf.keras.layers.Embedding(len(unique_movie_titles) + 1, 32)
    ])
​
    self.title_vectorizer = tf.keras.layers.experimental.preprocessing.TextVectorization(
        max_tokens=max_tokens)
​
    self.title_text_embedding = tf.keras.Sequential([
      self.title_vectorizer,
      tf.keras.layers.Embedding(max_tokens, 32, mask_zero=True),
      tf.keras.layers.GlobalAveragePooling1D(),
    ])
​
    self.title_vectorizer.adapt(movies)
​
  def call(self, titles):
    return tf.concat([
        self.title_embedding(titles),
        self.title_text_embedding(titles),
    ], axis=1)

Combined model

With both UserModel and MovieModel defined, we can put together a combined model and implement our loss and metrics logic.

Note that we also need to make sure that the query model and candidate model output embeddings of compatible size. Because we'll be varying their sizes by adding more features, the easiest way to accomplish this is to use a dense projection layer after each model:

代码语言:javascript
复制
class MovielensModel(tfrs.models.Model):
​
  def __init__(self, use_timestamps):
    super().__init__()
    self.query_model = tf.keras.Sequential([
      UserModel(use_timestamps),
      tf.keras.layers.Dense(32)
    ])
    self.candidate_model = tf.keras.Sequential([
      MovieModel(),
      tf.keras.layers.Dense(32)
    ])
    self.task = tfrs.tasks.Retrieval(
        metrics=tfrs.metrics.FactorizedTopK(
            candidates=movies.batch(128).map(self.candidate_model),
        ),
    )
​
  def compute_loss(self, features, training=False):
    # We only pass the user id and timestamp features into the query model. This
    # is to ensure that the training inputs would have the same keys as the
    # query inputs. Otherwise the discrepancy in input structure would cause an
    # error when loading the query model after saving it.
    query_embeddings = self.query_model({
        "user_id": features["user_id"],
        "timestamp": features["timestamp"],
    })
    movie_embeddings = self.candidate_model(features["movie_title"])
​
    return self.task(query_embeddings, movie_embeddings)

Experiments

Prepare the data

We first split the data into a training set and a testing set.

代码语言:javascript
复制
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)
​
train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)
​
cached_train = train.shuffle(100_000).batch(2048)
cached_test = test.batch(4096).cache()

Baseline: no timestamp features

We're ready to try out our first model: let's start with not using timestamp features to establish our baseline.

代码语言:javascript
复制
model = MovielensModel(use_timestamps=False)
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))
​
model.fit(cached_train, epochs=3)
​
train_accuracy = model.evaluate(
    cached_train, return_dict=True)["factorized_top_k/top_100_categorical_accuracy"]
test_accuracy = model.evaluate(
    cached_test, return_dict=True)["factorized_top_k/top_100_categorical_accuracy"]
​
print(f"Top-100 accuracy (train): {train_accuracy:.2f}.")
print(f"Top-100 accuracy (test): {test_accuracy:.2f}.")

This gives us a baseline top-100 accuracy of around 0.2

Capturing time dynamics with time features

Do the result change if we add time features?

代码语言:javascript
复制
model = MovielensModel(use_timestamps=True)
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))
​
model.fit(cached_train, epochs=3)
​
train_accuracy = model.evaluate(
    cached_train, return_dict=True)["factorized_top_k/top_100_categorical_accuracy"]
test_accuracy = model.evaluate(
    cached_test, return_dict=True)["factorized_top_k/top_100_categorical_accuracy"]
​
print(f"Top-100 accuracy (train): {train_accuracy:.2f}.")
print(f"Top-100 accuracy (test): {test_accuracy:.2f}.")

This is quite a bit better: not only is the training accuracy much higher, but the test accuracy is also substantially improved.

代码链接: https://codechina.csdn.net/csdn_codechina/enterprise_technology/-/blob/master/NLP_recommend/Taking%20advantage%20of%20context%20features.ipynb

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Model definition
    • Query model
      • Candidate model
        • Combined model
        • Experiments
          • Prepare the data
            • Baseline: no timestamp features
              • Capturing time dynamics with time features
              相关产品与服务
              NLP 服务
              NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档