虚拟内存是现代操作系统中最伟大的发明之一。它为每个进程提供了一个一致的、私有的地址空间,让每个进程产生了一种自己在独享主存的错觉。 为了讲清楚MMU是如何一步一步完成地址翻译,取出数据的,本篇文章在前4节中讲解了虚拟内存中一些重要的概念,比如,虚拟内存的作用,页命中,缺页异常处理,为什么需要TLB等等。最后,通过两个地址翻译的例子,详细解释了MMU地址翻译的过程。
CPU通过MMU找到虚拟地址对应的物理地址
我们先来看下,CPU是如何根据地址取得数据的。
CPU 在这里生成的物理地址为 4,把地址发送给内存,然后内存从该地址获取其中保存的字,最后将其发送回 CPU。
MMU(Memory Management Unit)叫做内存管理单元,主要用来管理虚拟内存与物理内存的映射,由硬件自动完成。
物理地址
这里需要比较烧脑地介绍几个名词,后面理解MMU地址翻译的时候会用到。
虚拟地址
页表
页命中
缺页
局部性原则保证了在任意时刻, 程序将往往在一个较小的活动页面集合上工作,这个集合叫做工作集或者常驻集。
换句话说, 局部性原则揭示了一个现象:在一段时间内,我们会反复调入或调出同一个或几个虚拟页页面。而且,每次CPU产生一个VA时, MMU就必须查阅PTE,以便将VA翻译为PA, 注意是每次,所以开销很大。
解决方法: 为了消除这样的开销,在MMU中包括了一个关于PTE的小缓存,称为翻译后备缓冲器,TLB(Translation Lookaside Buffer)。
关键点: 所有的地址翻译步骤都是在芯片上的MMU中执行的, 因此执行速度非常快。
说了这么多,下面就是本文的重点,我们看两个例子,虚拟地址是如何转换为物理地址的。
简单内存系统的地址组成
假设我们有一个简单内存系统,我们做出如下规定:
TLB
假设TLB 有 16 个条目,并且是 4 路组相连的。TLB 缓存的是页表条目,页表条目是虚拟页号的唯一标识。所以,我们只需要用虚拟页号去访问 TLB。
我们使用 VPN 的低两位(2^2=4)作为组索引。剩下的6位作为标记位。然后用不同的值来初始化 TLB。
左边的红色区域(第一个列)并不是 TLB 的条目,仅仅是为了方便区分是哪一组。
我们只根据索引来查找组,每一个条目都有一个标记位。一个 TLB 条目如果有效,它就含有一个物理地址。
页表的前 16 个条目
现在,我们还需要页表。假设,图中是我们页表的前 16 个条目。每一个页表有一个物理页号和一个有效位。
如果有效位有效,则表示那个虚拟页面对应的物理页面在内存中,并且 PPN 项给出了对应的物理页号。
CPU产生的虚拟地址
假设 CPU 执行了一条指令,它产生了一个有效地址 0x3d4。它把这个地址传递给了 MMU。
我们需要找出对应的物理地址,然后从缓存或内存中取出数据。
在这个例子中,虚拟页面偏移(VPO)是0x24,虚拟页号(VPN)是 0xf,TLB 索引(TLBI)是虚拟页号的低两位是 0b11,也就是 0x3。TLB 标记位(TLBT)是 3。
TLB
MMU 做的第一件是就是查询 TLB,所以,我们先取出索引位,值为 3。
我们找到第 3 组,我们在第 3 组中找标记位为 3 的表项。
遍历这 4 个条目,有一个标记位为 7 的项,但它不是我们想要的,它的有效位为 0。再往后找,找到一个标记位为 3 并且有效位为 1。
所以,我们在 TLB 中找到了页表条目。页表条目返回这个值。MMU 返回的物理页号是 0x0D。
构造物理地址
现在我们可以构造物理地址,PPO的值总是等于VPO的值,可以直接拷贝过来,为0x24。
PPN的值从 TLB 缓存的 PTE 中得到,为0x0d。合在一起构成了物理地址 0x354。
下一步是使用这个物理地址去看高速缓存中有没有这个物理地址的缓存。
把 0x354送入高速缓存,请求高速缓存返回对应物理地址上的值,在这个例子中,我们只需要返回一个字节。
高速缓存
高速缓存收到请求后,首先去检查高速缓存中是否有块缓存了该字节。
高速缓存先取出物理地址的索引位是 0b00101,也就是 0x5。
接着去第 5 组找。找标记位为 0xd 的项,有一个匹配的标记位且有效位为 1。这就是我们要在高速缓存中找的项。
偏移量是 0,所以我们去请求第五组偏移量为 0 的字节,值为 0x36。
缓存命中,高速缓存把这个字节返回给 MMU, MMU 把它传递给处理器。最后处理器可能把这个字节存储在一个寄存器里。
以上就是一个完整的地址翻译的例子,在这个例子中,并没有出现缺页的情况。
下面我们看一个在缺页异常处理中,是如何完成地址翻译的。
好了,我们来看下一个例子。这次 CPU 发送给 MMU 的虚拟地址是 0x0020。
虚拟地址0x0020
和之前的例子一样,我们可以得到VPN为0x00,VPO为0x01,TLBI为0,TLBT为0x00。
TLB
第一步是检查 TLB 看是否有页表条目的缓存。
在 TLB 中,如果缓存存在,它应该在第一组,并且它的标记位应该为 0。所以,我们在第 0 组内找标记位为 0 的项。
第一项是 0x03,不匹配,第二项是 0x09,不匹配,第三项是 0x00,匹配,但是有效位为 0。所以,这次 TLB 缓存不命中。
TLB不命中只能去页表中查找
查找缓存失败了,我们只能去内存中去读取页表中对应的页表条目。
查看页表,寻找虚拟页号为 0 的项。检查对应的页表条目,看虚拟页是否在内存中。
虚拟页号为 0 的项的有效位为1,我们就可以得到一个物理页号为0x28。根据物理页号和物理页面偏移量就可以构造出物理地址。
构造物理地址
现在 MMU 拥有了物理地址,就可以将其发送到高速缓存。并请求高速缓存返回对应的物理地址上的一个字节。
构造出的物理地址
高速缓存得到了这个物理地址。它取出对应的索引位,在这个例子中是 0x8。
所以我们去高速缓存的第八组,然后寻找对应的标记位,在这个例子中是0x28。
高速缓存
第八组有一个条目,它的标记位是 24,这里是一次缓存不命中。
所以,缓存就要向内存传递物理地址去得到所需要的字节。相关内容本篇就不再做具体讲解,可以参考下这篇文章。24张图7000字详解计算机中的高速缓存
虚拟存储器的工作原理是有一些复杂,本文描述的也并不全是最真实的计算机中的工作方式,比如,PTE由一个有效位和一个地址字段组成其实是为了便于理解而假设出来的。
但是这种方式成功的解决了直接使用物理内存会出现的问题。比如,虚拟内存中连续存储解决了物理内存碎片化,资源利用率过低的问题;每个进程只能访问自己独立的用户空间而内核空间是共用的解决了进程间的安全问题;缺页异常和选择牺牲页的算法提高了内存读写的效率等等。
我们应该对虚拟存储器的工作原理有深层次的理解,可以更好的帮助我们理解系统是如何工作的,也可以帮助我们避免在使用malloc这类的管理虚拟存储器的分配程序时遇到的一些错误。
本文参考 《深入理解计算机系统》
本文分享自 嵌入式与Linux那些事 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!