前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >史上最全!用Pandas读取CSV,看这篇就够了

史上最全!用Pandas读取CSV,看这篇就够了

作者头像
CDA数据分析师
发布2021-08-05 15:04:08
73.8K2
发布2021-08-05 15:04:08
举报
文章被收录于专栏:CDA数据分析师

导读:pandas.read_csv接口用于读取CSV格式的数据文件,由于CSV文件使用非常频繁,功能强大,参数众多,因此在这里专门做详细介绍。

作者:李庆辉

来源:大数据DT(ID:hzdashuju)

01 语法

基本语法如下,pd为导入Pandas模块的别名:

代码语言:javascript
复制
pd.read_csv(filepath_or_buffer: Union[str, pathlib.Path, IO[~AnyStr]],
            sep=',', delimiter=None, header='infer', names=None, index_col=None,
            usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True,
            dtype=None, engine=None, converters=None, true_values=None,
            false_values=None, skipinitialspace=False, skiprows=None,
            skipfooter=0, nrows=None, na_values=None, keep_default_na=True,
            na_filter=True, verbose=False, skip_blank_lines=True,
            parse_dates=False, infer_datetime_format=False,
            keep_date_col=False, date_parser=None, dayfirst=False,
            cache_dates=True, iterator=False, chunksize=None,
            compression='infer', thousands=None, decimal: str = '.',
            lineterminator=None, quotechar='"', quoting=0,
            doublequote=True, escapechar=None, comment=None,
            encoding=None, dialect=None, error_bad_lines=True,
            warn_bad_lines=True, delim_whitespace=False,
            low_memory=True, memory_map=False, float_precision=None)

一般情况下,会将读取到的数据返回一个DataFrame,当然按照参数的要求会返回指定的类型。

02 数据内容

filepath_or_buffer为第一个参数,没有默认值,也不能为空,根据Python的语法,第一个参数传参时可以不写参数名。可以传文件路径:

代码语言:javascript
复制
# 支持文件路径或者文件缓冲对象
# 本地相对路径
pd.read_csv('data/data.csv') # 注意目录层级
pd.read_csv('data.csv') # 如果文件与代码文件在同一目录下
pd.read_csv('data/my/my.data') # CSV文件的扩展名不一定是.csv
# 本地绝对路径
pd.read_csv('/user/gairuo/data/data.csv')
# 使用URL
pd.read_csv('https://www.gairuo.com/file/data/dataset/GDP-China.csv')

需要注意的是,Mac中和Windows中路径的写法不一样,上例是Mac中的写法,Windows中的相对路径和绝对路径需要分别换成类似'data\data.csv'和'E: \data\data.csv'的形式。另外,路径尽量不要使用中文,否则程序容易报错,这意味着你存放数据文件的目录要尽量用英文命名。

可以传数据字符串,即CSV中的数据字符以字符串形式直接传入:

代码语言:javascript
复制
from io import StringIO
data = ('col1,col2,col3\n'
        'a,b,1\n'
        'a,b,2\n'
        'c,d,3')

pd.read_csv(StringIO(data))
pd.read_csv(StringIO(data), dtype=object)

也可以传入字节数据:

代码语言:javascript
复制
from io import BytesIO
data = (b'word,length\n'
        b'Tr\xc3\xa4umen,7\n'
        b'Gr\xc3\xbc\xc3\x9fe,5')

pd.read_csv(BytesIO(data))

03 分隔符

sep参数是字符型的,代表每行数据内容的分隔符号,默认是逗号,另外常见的还有制表符(\t)、空格等,根据数据的实际情况传值。

代码语言:javascript
复制
# 数据分隔符默认是逗号,可以指定为其他符号
pd.read_csv(data, sep='\t') # 制表符分隔tab
pd.read_table(data) # read_table 默认是制表符分隔tab
pd.read_csv(data, sep='|') # 制表符分隔tab
pd.read_csv(data,sep="(?<!a)\|(?!1)", engine='python') # 使用正则表达式

pd.read_csv还提供了一个参数名为delimiter的定界符,这是一个备选分隔符,是sep的别名,效果和sep一样。如果指定该参数,则sep参数失效。

04 表头

header参数支持整型和由整型组成的列表,指定第几行是表头,默认会自动推断把第一行作为表头。

代码语言:javascript
复制
pd.read_csv(data, header=0) # 第一行
pd.read_csv(data, header=None) # 没有表头
pd.read_csv(data, header=[0,1,3]) # 多层索引MultiIndex
  • 注意:如果skip_blank_lines=True,header参数将忽略空行和注释行, 因此header=0表示第一行数据而非文件的第一行。

05 列名

names用来指定列的名称,它是一个类似列表的序列,与数据一一对应。如果文件不包含列名,那么应该设置header=None,列名列表中不允许有重复值。

代码语言:javascript
复制
pd.read_csv(data, names=['列1', '列2']) # 指定列名列表
pd.read_csv(data, names=['列1', '列2'], header=None)

06 索引

index_col用来指定索引列,可以是行索引的列编号或者列名,如果给定一个序列,则有多个行索引。Pandas不会自动将第一列作为索引,不指定时会自动使用以0开始的自然索引。

代码语言:javascript
复制
# 支持int、str、int序列、str序列、False,默认为None
pd.read_csv(data, index_col=False) # 不再使用首列作为索引
pd.read_csv(data, index_col=0) # 第几列是索引
pd.read_csv(data, index_col='年份') # 指定列名
pd.read_csv(data, index_col=['a','b']) # 多个索引
pd.read_csv(data, index_col=[0, 3]) # 按列索引指定多个索引

07 使用部分列

如果只使用数据的部分列,可以用usecols来指定,这样可以加快加载速度并降低内存消耗。

代码语言:javascript
复制
# 支持类似列表的序列和可调用对象
# 读取部分列
pd.read_csv(data, usecols=[0,4,3]) # 按索引只读取指定列,与顺序无关
pd.read_csv(data, usecols=['列1', '列5']) # 按列名,列名必须存在
# 指定列顺序,其实是df的筛选功能
pd.read_csv(data, usecols=['列1', '列5'])[['列5', '列1']]
# 以下用callable方式可以巧妙指定顺序,in后面的是我们要的顺序
pd.read_csv(data, usecols=lambda x: x.upper() in ['COL3', 'COL1'])

08 返回序列

将squeeze设置为True,如果文件只包含一列,则返回一个Series,如果有多列,则还是返回DataFrame。

代码语言:javascript
复制
# 布尔型,默认为False
# 下例只取一列,会返回一个Series
pd.read_csv(data, usecols=[0], squeeze=True)
# 有两列则还是df
pd.read_csv(data, usecols=[0, 2], squeeze=True)

09 表头前缀

如果原始数据没有列名,可以指定一个前缀加序数的名称,如n0、n1,通过prefix参数指定前缀。

代码语言:javascript
复制
# 格式为字符型str
# 表头为c_0、c_2
pd.read_csv(data, prefix='c_', header=None)

10 处理重复列名

如果该参数为True,当列名有重复时,解析列名将变为X, X.1, …, X.N,而不是X, …, X。如果该参数为False,那么当列名中有重复时,前列将会被后列覆盖。

代码语言:javascript
复制
# 布尔型,默认为True
data = 'a,b,a\n0,1,2\n3,4,5'
pd.read_csv(StringIO(data), mangle_dupe_cols=True)
# 表头为a b a.1
# False会报ValueError错误

11 数据类型

dtype可以指定各数据列的数据类型。

代码语言:javascript
复制
# 传入类型名称,或者以列名为键、以指定类型为值的字典
pd.read_csv(data, dtype=np.float64) # 所有数据均为此数据类型
pd.read_csv(data, dtype={'c1':np.float64, 'c2': str}) # 指定字段的类型
pd.read_csv(data, dtype=[datetime, datetime, str, float]) # 依次指定

12 引擎

使用的分析引擎可以选择C或Python。C语言的速度最快,Python语言的功能最为完善,一般情况下,不需要另行指定。

代码语言:javascript
复制
# 格式为engine=None,其中可选值有{'c', 'python'}
pd.read_csv(data, engine='c')

13 列数据处理

使用converters参数对列的数据进行转换,参数中指定列名与针对此列的处理函数,最终以字典的形式传入,字典的键可以是列名或者列的序号。

代码语言:javascript
复制
# 字典格式,默认为None
data = 'x,y\na,1\nb,2'
def foo(p):
    return p+'s'
# x应用函数,y使用lambda
pd.read_csv(StringIO(data), converters={'x': foo,
                                        'y': lambda x: x*3})
# 使用列索引
pd.read_csv(StringIO(data),
            converters={0: foo, 1: lambda x: x*3})

14 真假值转换

使用true_values和false_values将指定的文本内容转换为True或False,可以用列表指定多个值。

代码语言:javascript
复制
# 列表,默认为None
data = ('a,b,c\n1,Yes,2\n3,No,4')
pd.read_csv(StringIO(data),
            true_values=['Yes'], false_values=['No'])

15 跳过指定行

如下跳过需要忽略的行数(从文件开始处算起)或需要忽略的行号列表(从0开始):

代码语言:javascript
复制
# 类似列表的序列或者可调用对象
# 跳过前三行
pd.read_csv(data, skiprows=2)
# 跳过前三行
pd.read_csv(data, skiprows=range(2))
# 跳过指定行
pd.read_csv(data, skiprows=[24,234,141])
# 跳过指定行
pd.read_csv(data, skiprows=np.array([2, 6, 11]))
# 隔行跳过
pd.read_csv(data, skiprows=lambda x: x % 2 != 0)

尾部跳过,从文件尾部开始忽略,C引擎不支持。

代码语言:javascript
复制
# int类型, 默认为0
pd.read_csv(filename, skipfooter=1) # 最后一行不加载

skip_blank_lines指定是否跳过空行,如果为True,则跳过空行,否则数据记为NaN。

代码语言:javascript
复制
# 布尔型,默认为True
# 不跳过空行
pd.read_csv(data, skip_blank_lines=False)

如果skip_blank_lines=True,header参数将忽略空行和注释行, 因此header=0表示第一行数据而非文件的第一行。

16 读取指定行

nrows参数用于指定需要读取的行数,从文件第一行算起,经常用于较大的数据,先取部分进行代码编写。

代码语言:javascript
复制
# int类型,默认为None
pd.read_csv(data, nrows=1000)

17 空值替换

na_values参数的值是一组用于替换NA/NaN的值。如果传参,需要指定特定列的空值。以下值默认会被认定为空值:

代码语言:javascript
复制
['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN',
 '#N/A N/A', '#N/A', 'N/A', 'n/a', 'NA',
 '#NA', 'NULL', 'null', 'NaN', '-NaN',
 'nan', '-nan', '']

使用na_values时需要关注下面keep_default_na的配合使用和影响:

代码语言:javascript
复制
# 可传入标量、字符串、类似列表序列和字典,默认为None
# 5和5.0会被认为是NaN
pd.read_csv(data, na_values=[5])
# ?会被认为是NaN
pd.read_csv(data, na_values='?')
# 空值为NaN
pd.read_csv(data, keep_default_na=False, na_values=[""])
# 字符NA和字符0会被认为是NaN
pd.read_csv(data, keep_default_na=False, na_values=["NA", "0"])
# Nope会被认为是NaN
pd.read_csv(data, na_values=["Nope"])
# a、b、c均被认为是NaN,等于na_values=['a','b','c']
pd.read_csv(data, na_values='abc')
# 指定列的指定值会被认为是NaN
pd.read_csv(data, na_values={'c':3, 1:[2,5]})

18 保留默认空值

分析数据时是否包含默认的NaN值,是否自动识别。如果指定na_values参数,并且 keep_default_na=False,那么默认的NaN将被覆盖,否则添加。keep_default_na和na_values的关系见表3-2。

▼表3-2 keep_default_na和na_values的取值逻辑关系

  • 说明:如果na_filter为False(默认为True),那么keep_default_na和na_values参数均无效。
代码语言:javascript
复制
# 布尔型,默认为True
# 不自动识别空值
pd.read_csv(data, keep_default_na=False)

na_filter为是否检查丢失值(空字符串或空值)。对于大文件来说,数据集中没有空值,设定na_filter=False可以提升读取速度。

代码语言:javascript
复制
# 布尔型,默认为True
pd.read_csv(data, na_filter=False) # 不检查

19 日期时间解析

日期时间解析器参数date_parser用于解析日期的函数,默认使用dateutil.parser.parser来做转换。

如果为某些或所有列启用了parse_dates,并且datetime字符串的格式都相同,则通过设置infer_datetime_format=True,可以大大提高解析速度,pandas将尝试推断datetime字符串的格式,然后使用更快的方法解析字符串,从而将解析速度提高5~10倍。如果无法对整列做出正确的推断解析,Pandas将返回到正常的解析模式。

下面是一些可自动推断的日期时间字符串示例,它们都表示2020年12月30日00:00:00:

  • "20201230"
  • "2020/12/30"
  • "20201230 00:00:00"
  • "12/30/2020 00:00:00"
  • "30/Dec/2020 00:00:00"
  • "30/December/2020 00:00:00"
代码语言:javascript
复制
# 解析时间的函数名,默认为None
# 指定时间解析库,默认是dateutil.parser.parser
date_parser = pd.io.date_converters.parse_date_time
date_parser = lambda x: pd.to_datetime(x, utc=True, format='%d%b%Y')
date_parser = lambda d: pd.datetime.strptime(d, '%d%b%Y')
# 使用
pd.read_csv(data, parse_dates=['年份'], date_parser=date_parser)

parse_dates参数用于对时间日期进行解析。

代码语言:javascript
复制
# 布尔型、整型组成的列表、列表组成的列表或者字典,默认为False
pd.read_csv(data, parse_dates=True) # 自动解析日期时间格式
pd.read_csv(data, parse_dates=['年份']) # 指定日期时间字段进行解析
# 将第1、4列合并解析成名为“时间”的时间类型列
pd.read_csv(data, parse_dates={'时间':[1,4]})

如果infer_datetime_format被设定为True并且parse_dates可用,那么Pandas将尝试转换为日期类型。

代码语言:javascript
复制
# 布尔型,默认为False
pd.read_csv(data, parse_dates=True, infer_datetime_format=True)

如果用上文中的parse_dates参数将多列合并并解析成一个时间列,设置keep_date_col的值为True时,会保留这些原有的时间组成列;如果设置为False,则不保留这些列。

代码语言:javascript
复制
# 布尔型,默认为False
pd.read_csv(data, parse_dates=[[1, 2], [1, 3]], keep_date_col=True)

对于DD/MM格式的日期类型,如日期2020-01-06,如果dayfirst=True,则会转换成2020-06-01。

代码语言:javascript
复制
# 布尔型,默认为False
pd.read_csv(data, dayfirst=True, parse_dates=[0])

cache_dates如果为True,则使用唯一的转换日期缓存来应用datetime转换。解析重复的日期字符串,尤其是带有时区偏移的日期字符串时,可能会大大提高速度。

代码语言:javascript
复制
# 布尔型,默认为True
pd.read_csv(data, cache_dates=False)

20 文件处理

以下是一些对读取文件对象的处理方法。iterator参数如果设置为True,则返回一个TextFileReader对象,并可以对它进行迭代,以便逐块处理文件。

代码语言:javascript
复制
# 布尔型,默认为False
pd.read_csv(data, iterator=True)

chunksize指定文件块的大小,分块处理大型CSV文件。

代码语言:javascript
复制
# 整型,默认为None
pd.read_csv(data, chunksize=100000)

# 分块处理大文件
df_iterator = pd.read_csv(file, chunksize=50000)
def process_dataframe(df):
    pass
    return processed_df

for index,df_tmp in enumerate(df_iterator):
    df_processed = process_dataframe(df_tmp)
    if index > 0:
       df_processed.to_csv(path)
    else:
       df_processed.to_csv(path, mode='a', header=False)

compression(压缩格式)用于对磁盘数据进行即时解压缩。如果为“infer”,且filepath_or_buffer是以.gz、.bz2、.zip或.xz结尾的字符串,则使用gzip、bz2、zip或xz,否则不进行解压缩。如果使用zip,则ZIP文件必须仅包含一个要读取的数据文件。设置为None将不进行解压缩。

代码语言:javascript
复制
# 可选值有'infer'、'gzip'、'bz2'、'zip'、'xz'和None,默认为'infer'
pd.read_csv('sample.tar.gz', compression='gzip')

encoding(编码)指定字符集类型,通常指定为'utf-8'。

代码语言:javascript
复制
# 字符型,默认为None
pd.read_csv('gairuo.csv', encoding='utf8')
pd.read_csv("gairuo.csv",encoding="gb2312") # 常见中文

21 符号

以下是对文件中的一些数据符号进行的特殊识别处理。如下设置千分位分隔符thousands:

代码语言:javascript
复制
# 字符型,默认为None
pd.read_csv('test.csv', thousands=',') # 逗号分隔

小数点decimal,识别为小数点的字符。

代码语言:javascript
复制
# 字符串,默认为'.'
pd.read_csv(data, decimal=",")

行结束符lineterminator,将文件分成几行的字符,仅对C解析器有效。

代码语言:javascript
复制
# 长度为1的字符串,默认为None
data = 'a,b,c~1,2,3~4,5,6'
pd.read_csv(StringIO(data), lineterminator='~')

引号quotechar,用于表示引用数据的开始和结束的字符。引用的项目可以包含定界符,它将被忽略。

代码语言:javascript
复制
# 长度为1的字符串
pd.read_csv(file, quotechar='"')

在csv模块中,数据可能会用引号等字符包裹起来,quoting参数用来控制识别字段的引号模式,它可以是Python csv模块中的csv.QUOTE_*常量,也可以传入对应的数字。各个传入值的意义如下。

  • 0或csv.QUOTE_MINIMAL:仅特殊字段有引号。
  • 1或csv.QUOTE_ALL:所有字段都有引号。
  • 2或csv.QUOTE_NONNUMERIC:所有非数字字段都有引号。
  • 3或csv.QUOTE_NONE:所有字段都没有引号。

如果使用csv模块,则需要事先引入csv模块。

代码语言:javascript
复制
# 整型或者csv.QUOTE_*实例, 默认为0
import csv
pd.read_csv('input_file.csv', quoting=csv.QUOTE_NONE)

双引号doublequote,当单引号已经被定义,并且quoting参数不是QUOTE_NONE的时候,使用双引号表示将引号内的元素作为一个元素使用。

代码语言:javascript
复制
# 布尔型,默认为True
import csv
pd.read_csv('data.csv', quotechar='"', doublequote=True, quoting=csv.QUOTE_NONNUMERIC)

escapechar可以传入一个转义符,用于过滤数据中的该转入符。比如,如果一行用双引号包裹着的数据中有换行符,用以下代码可以过滤其中的换行符。

代码语言:javascript
复制
# 长度为1的转义字符串,默认为None
pd.read_csv(StringIO(data), escapechar='\n', encoding='utf-8')

注释标识comment,指示不应分析行的部分。如果在一行的开头找到该标识,则将完全忽略该行。此参数必须是单个字符。像空行一样(只要skip_blank_lines = True),注释的行将被参数header忽略,而不是被skiprows忽略。例如,如果comment ='#',则解析header=0的'#empty \ na,b,c \ n1,2,3'会将'a,b,c'视为header。

代码语言:javascript
复制
# 字符串,默认为None
s = '# notes\na,b,c\n# more notes\n1,2,3'
pd.read_csv(StringIO(s), sep=',', comment='#', skiprows=1)

空格分隔符delim_whitespace,指定是否将空格(例如''或'\ t')用作分隔符,等效于设置sep ='\s+'。如果此选项设置为True,则不应该为delimiter参数传递任何内容。

代码语言:javascript
复制
# 布尔型,默认为False
pd.read_csv(StringIO(data), delim_whitespace=False)

22 小结

通过本文的介绍,我们了解了读取CSV文件的一些参数的功能,也了解了在读取CSV文件时可以做一些初步的数据整理工作。

关于作者:李庆辉,数据产品专家,某电商公司数据产品团队负责人,擅长通过数据治理、数据分析、数据化运营提升公司的数据应用水平。精通Python数据科学及Python Web开发,曾独立开发公司的自动化数据分析平台,参与教育部“1+X”数据分析(Python)职业技能等级标准评审。中国人工智能学会会员,企业数字化、数据产品和数据分析讲师,在个人网站“盖若”上编写的技术和产品教程广受欢迎。

本书摘编自《深入浅出Pandas:利用Python进行数据处理与分析》,机械工业出版社华章公司2021年出版。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-07-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CDA数据分析师 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档