前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据预警模型,该如何搭建?

数据预警模型,该如何搭建?

作者头像
Python数据科学
发布2021-08-10 17:24:58
8950
发布2021-08-10 17:24:58
举报
文章被收录于专栏:Python数据科学

数据分析能主动做出预警,是所有人的终极期望。可现实是很惨淡的,经常是指标已经下跌了,业务部门忙得团团转了,数据分析才慢慢悠悠地分析“昨天为啥DAU下降30%”。

最后辛苦半天落个“我早知道了,早干啥去了!”的抱怨。那如何提前做出预警?今天系统讲解一下。

01

第一步:清晰角色

首先要清晰:预警是给到人的警报。因此谁需要听这个警报,是第一顺位要考虑的。在实际工作中,有四大类角色:

进行预警第一步,就是要先明确要预警的业务场景,把一个场景内所有相关责任人都考虑进来,避免漏了角色(如下图)。

02

第二步:收集动作

其次要注意:问题因人而起,也因人而终。因此第二顺位需要考虑的,是这四类角色对指标走势,到底有啥影响。要分门别类地收集这四类人计划开展的动作,从而为第三步的评估做准备(如下图)。

注意:收集影响动作,是有顺序的,应该从高层→前台→中台→后台。

因为这是这四类人影响指标的顺序是这样的:

l 高层定的目标,决定了前台执行难度

l 前台执行质量,决定了中台辅助难度

l 实际业绩结果,决定了后台支撑难度

l 后台支撑好坏,决定了问题是否扩大

在工作中,这四个环节环环相扣。如果配合得好,即使出现问题,也能化险为夷。如果配合得差,则相互拖累,越做越错(如下图)。

在实际工作中,并不是一个简单清晰的工作闭环从头做到位,然后再做下一个。每个部门都是一堆工作同时在进行。因此,收集部门动作并非一蹴而就的,而是需要有畅通的信息渠道,特别是当指标开始出现问题苗头时,业务部门做出的应激反应,要有一定程度了解。这样才能更好地辅助判断,做出准确警报。

03

第三步:数据评估

有了第二步动作收集,可以开始第三步数据评估。数据评估是预警的最关键一步,是避免执行期间看到数据波动脑袋空空的关键。

之所以能提前感知指标波动的风险,是基于:过去发生的未来会重现,这样一个简单的道理。因此,有必要对过程发生过什么,进行深入评估。(如下图)

这里涉及多种具体分析方法,之前文章都有分享,不再一一赘述了。

04

第四步:做出预警

有了以上准备,可以做出预警了。预警模型建立后,从制定计划阶段开始,就能开始运作。并且贯穿定方案、做执行、做复盘的各个阶段,并且涵盖了主力、辅助的角色(如下图)。

比如制定了销售目标,那么:

定方案阶段:销售的方案(包括销售计划、人力配置、配套物料/辅销品)是否能支撑当前目标?如果支撑不住,这时就能直接预警,提醒问题。

做执行阶段-作为主力的销售:是否各销售团队执行到位?执行不到位是谁没有到位?影响多少大盘?作为主力角色,只要其下某些分支出现问题,都是要直接发出预警的,避免问题恶化。

做执行阶段-作为辅助的供应链:达标率太好的情况下,是否购货充足?达标率太差的情况下,是否有积压风险?如果销售表现好,但关联的辅助部门马上面临缺货风险,此时也要及时预警!

注意:在过程中预警的时候,要考虑业务部门应激行动。比如有可能业绩很好,库存马上要断,此时应了解是否有补货计划,如果有,在预警时要提及此时,并且分乐观(100%按时完成计划)、保守(50%或更少完成计划)、悲观(无法完成计划),分别给出预警,以及预估结果(如下图)。

这样的预警,给管理层的体验非常好

1、管理层能通过分析师的工作,掌控业务全局。

2、在定方案阶段就能预知风险,从而做充足的准备。

3、在过程中,不但能看到预警数值,而且能大概锁定问题方向,减少了过程中被“打闷棍”的感觉。

4、看到预警结果的时候,能同步看到预期处理方案,从而快速做出决策判断。

这样,比事后看到诸如“DAU跌了一大截”“销售连续4天不达标”等结果以后再问为什么,体验好太多了。理想的状态下,可能只要一两个关联指标变差,就能马上感知到主指标跳水的风险。

05

数据预警的错误姿势

数据预警的错误做法,当然是指望一个神威无敌大将军模型,能把所有指标100%预测准确。实际影响指标的因素太多,且外部环境压力,内部主动行为,都很难量化。因此完全把宝赌在靠着极其有限的几个数预测的模型,完全不靠谱。

真正靠谱的做法,是数据分析师保持高度的消息灵通,按照上文的四个步骤,提前做好准备,才能应对变化。未卜肯定先知不了,但是卜过,就有机会发现问题。

很多不懂行的人,会以为数据真的能让人开天眼般洞察一切。实际上恰恰相反,一个数据分析师,得先开天眼,对公司情况了若指掌,之后才能对数据走势做出判断。

这一点切记切记。

当然,这套模型的运行,有三个基础条件:

1、数据部门与业务、管理层有充分沟通,掌握足够多信息

2、数据部门对过往发生的目标、方法、执行情况有充分复盘与经验积累

3、业务流程数字化程度高,各个部门的行动能以数据形式记录

这三点,刚好对应了管理问题、分析方法问题、基础建设问题。因此并非所有公司都能运用。如果公司的氛围实在太差,就只能用一些短平快的预警方法。


本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-08-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Python数据科学 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档