前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Transformer 向轻量型迈进!微软与中科院提出两路并行的 Mobile-Former

Transformer 向轻量型迈进!微软与中科院提出两路并行的 Mobile-Former

作者头像
AIWalker
发布2021-08-25 11:29:07
1K0
发布2021-08-25 11:29:07
举报
文章被收录于专栏:AIWalkerAIWalker

极市导读

本文创造性的将MobileNet与Transformer进行了两路并行设计,穿插着全局与特征的双向融合,同时利用卷积与Transformer两者的优势达到“取长补短”的目的。 >>加入极市CV技术交流群,走在计算机视觉的最前沿

论文链接:https://arxiv.org/abs/2108.05895

已有的Transformer对标的CNN主要是ResNet系列,鲜少有对标端侧轻量模型的Transformer。本文则从轻量模型角度出发,在MobileNet与Transformer组合方面进行了探索,它创造性的将MobileNet与Transformer进行了两路并行设计,穿插着全局与特征的双向融合,同时利用卷积与Transformer两者的优势达到“取长补短”的目的。此外,受益于超轻量设计,所提Mobile-Former不仅计算高效,同时具有更强的表达能力。在ImageNet分类与COCO目标检测方面,所提Mobile-Former取得了显著优于MobileNetV3的性能。

Abstract

本文提出了一种新颖的Mobile-Former,它采用了MobileNet与Transformer两路并行设计机制,该架构充分利用了MobileNet的局部处理优势与Transformer的全局交互能力。Transformer与MobileNet的双向桥接促进了全局特征与局部特征的双向融合。

不同于现有的Vision Transformer,Mobile-Former中的Transformer包含非常少的(比如少于6个)、随机初始化tokens,进而产生了非常低的计算复杂度。结合所提轻量注意力,Mobile-Former不仅计算高效,同时具有更强的表达能力。在ImageNet分类任务上,从25M到500M Flops复杂度下,所提方案均取得了优于MobileNetV3的性能。比如,它凭借294MFlops计算量取得了比MobileNetV3高1.3%的top1精度且计算量节省17%;当迁移到目标检测时,Mobile-Former取得了比MobileNetV3高8.6AP的指标。

Method

上图给出了本文所提Mobile-Former整体架构示意图,MobileNet与Transformer之间通过双向注意力进行桥接。其中,Mobile以输入图像作为输入,并采用IBB(Inverted Bottleneck Block)提取局部特征;Former则以可学习参数(即tokens)作为输入,值得注意的是,这里的tokens采用了随机初始化方式而非已有ViT中的PatchEmbedding。这种处理机制可以有效的降低token的数量。

Mobile与Former之间通过双向桥连接以进行局部、全局特征融合。我们采用表示桥的两个方向,我们提出了一种轻量注意力机制模拟该双向桥。

Low Cost Two-Way Bridge

我们利用Cross Attention(交叉注意力)进行局部特征与全局token的信息融合。在标准交叉注意力的基础上引入以下两个改进以降低计算量:

  • 在Mobile的低通道部分计算交叉注意力;
  • 当位置数量比较,移除Mobile端的投影,而保持Former端不变;

假设局部特征为,全局token为,那么局部到全局轻量交叉注意力定义如下:

z^{out} = z + [Attention(z_h W_h^Q, x_h, x_h)]_{h=1:H} W^O \\ Attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d_k}})V

注:在这里,全局特征z为query,局部特征x为key与value。该过程可参见上图的。

类似地,全局到局部地交叉注意力(参见上图)定义如下:

x^{out} = x + [Attention(x_h, z_h W_k^K, z_h W_hW^V)]_{h=1:H}

Mobile-Former Block

由前面的Figure1可以看到,所提模型可以解耦为多个Mobile-Former模块的堆叠,每个模块包含一个Mobile子模块、一个Former子模块以及双向桥接。更具体详见上述Figure3.

Input and Output Mobile-Former模块包含两个输入:(1) 局部特征;(2) 全局tokens 。该模块将输出更新后的局部特征与全局tokens 并作为下一个模块的输入。

Mobile sub-block 该子模块以特征作为输入,它在原始的IBB基础上进行了轻微改动:将ReLU替换为DReLU(Dynamic ReLU)。该子模块的输出表示,它将用作的输入。

Former sub-block 它是一个标准多头Transformer模块,为节省节省量将FFN中的扩展比例从4调整为2。需要注意:Former子模块在两路交叉注意力之间进行处理,计算复杂度为 ,第一项为query与key之间的点乘;而第二项则覆盖线性投影与FFN。由于tokens数量非常少,故第一项可以忽略不记。

所提轻量交叉注意力用于将局部特征融合到全局token。相比标准注意力,为节省计算量,移除了投影矩阵,其计算复杂度为。

在这里,交叉注意力用于将全局token融合到局部特征。由于局部特征为query,全局特征为key、value。因此,这里保留了投影矩阵而移除了投影矩阵。其计算复杂度为。

Computational Complexity Mobile-Former模块的四部分具有不同的计算复杂度,其中Mobile子模块共享了最多的计算复杂度,而Former子模块与两路桥接贡献了不到20%的计算复杂度。

Network Specification

上表给出了所提Mobile-Former的网络架构示意图,它由11个不同输入分辨率的Mobile-Former模块构成,所有Mobile-Former均具有6个维度为192的全局token。stem由卷积+轻量bottleneck构成,分类头则采用以局部特征全局均值池化与全局token的首个元素拼接作为输入并通过两个全连接层预测。

Downsample Mobile-Former Block 注意到stage2-5均具有一个下采样版本的Mobile-Former模块。在Mobile-Former模块中的Mobile子模块从三个层(pointwise->depthwise->pointwise)调整为四层(depthwise->pointwise->depthwise->pointwise),其中第一个depthwise用于降低特征分辨率。

Mobile-Former 变种 按照计算复杂度,Mobile-Former具有7个不同计算量的模型,详细信息见下表(注:26M计算量的模型与52M的模型结构类似,区别在于将所有卷积替换为g=4的组卷积)。

Experiments

接下来,我们从ImageNet分类与COCO目标检测两个方面对所提方案进行性能验证。

ImageNet Classification

上表对比了MobileNetV3、EfficientNet、ShuffleNetV2、WeightNet与所提方案的性能对比,从中可以看到:在相近计算量下,所提方案具有更少的计算量、更高的性能。这说明:该并行设计机制可以有效的提升特征表达能力。

上表对比了所提方案与DeiT、T2T-ViT、PVT、ConViT、CoaT以及Swin的性能,从中可以看到:所提方案取得了更佳的性能,同时具有更少的计算量(少3-4倍)

上表比较不同轻量型模型的计算量-性能对比图,可以看到:Mobile-Former取得了显著优于其他CNN与ViT的性能-精度均衡

Object Detection

上表对比了COCO目标检测任务上的性能对比,从中可以看到:

  • 在相近计算复杂度下,所提方案以8.3+AP指标优于MobileNetV3与ShuffleNet;
  • 相比ResNet与ViT,所提方案取得了更高的AP指标、同时具有更低的FLOPs。具体来说,Mobile-Former-508M取得了比ResNet50更高的性能,同时计算量低7倍。

Ablation and Discussion

接下来,我们对所提Mobile-Former进行更深入的分析与讨论,这里以Mobile-Former-294M作为基线。

Mobile-Former is Effective

从上表可以看到:

  • 相比Mobile,Former与Bridge仅占用10.6%计算复杂度,但带来了2.6%的性能提升;
  • 采用DY-ReLU可以带来额外的1%性能提升。

上表对比了Mobile的卷积核尺寸的性能影响,可以看到:提升卷积核尺寸带来的性能提升可以忽略

Mobile-Former is Efficient

Mobile-Former不仅能够有效的编码局部特征与全局信息,同时计算高效,关键在于:Former仅需非常少的全局tokens。

Number of tokens in Former 上表对比了不同数量token时模型性能可以看到:甚至仅需一个全局token仍可取得非常好的性能(77.7%),当采用了3个与6个token时,模型性能提升分别为0.5%、0.7%。这表明:紧致的全局token对于Mobile-Former的高效性非常重要。

Token dimension 上表对比不同token维度的模型性能对比,从中可以看到:当维度从64提升到192过程中,性能从76.8%提升到了77.8%,此后性能收敛。当token数量为6,维度为192时,Former与Bridge的总计计算量仅占总体计算量的12%。

FFN in Former 从上表可以看到:移除FFN会带来0.3%的性能下降。这说明:FFN在Mobile-Former中的重要性很有限。这是因为:FFN并非Mobile-Former中仅有的通道融合模块。

Multi-head Attention via MLP 从上表可以看到:MLP替换MHA会导致0.5%的性能下降。相比MHA,MLP的计算更高效,但它是一种静态操作,不会根据输入自适应调整。

Limitations

Mobile-Former的主要局限在于模型大小,原因有如下两个:

  • 并行设计对于参数共享不够高效,合适因为Mobile、Former以及Bridge均有各自的参数。尽管Former由于token数量少而计算高效,但并不会节省参数量;
  • Mobile-Former的分类头有过多参数量,比例高达40%。当从图像分类任务切换到目标检测任务后(分类头会被移除),该问题可以得到缓解。

本文亮点总结

1.Mobile-Former由11个不同输入分辨率的Mobile-Former模块构成,所有Mobile-Former均具有6个维度为192的全局token。stem由卷积+轻量bottleneck构成,分类头则采用以局部特征全局均值池化与全局token的首个元素拼接作为输入并通过两个全连接层预测。

2.Mobile-Former中的Transformer包含非常少的(比如少于6个)、随机初始化tokens,进而产生了非常低的计算复杂度。结合所提轻量注意力,Mobile-Former不仅计算高效,同时具有更强的表达能力。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-08-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AIWalker 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Abstract
  • Method
    • Low Cost Two-Way Bridge
      • Mobile-Former Block
        • Network Specification
        • Experiments
          • ImageNet Classification
            • Object Detection
            • Ablation and Discussion
              • Mobile-Former is Effective
                • Mobile-Former is Efficient
                  • Limitations
                  相关产品与服务
                  图像识别
                  腾讯云图像识别基于深度学习等人工智能技术,提供车辆,物体及场景等检测和识别服务, 已上线产品子功能包含车辆识别,商品识别,宠物识别,文件封识别等,更多功能接口敬请期待。
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档