首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >系统性的学会 Pandas, 看这一篇就够了!

系统性的学会 Pandas, 看这一篇就够了!

作者头像
1480
发布2021-08-26 10:35:07
3.9K0
发布2021-08-26 10:35:07
举报
文章被收录于专栏:数据分析1480数据分析1480
作者:Ma Sizhou https://blog.csdn.net/weixin_45901519/article/details/112980822

1、Pandas数据结构

  • 2008年WesMcKinney开发出的库
  • 专门用于数据挖掘的开源python库
  • 以Numpy为基础,借力Numpy模块在计算方面性能高的优势
  • 基于matplotlib,能够简便的画图
  • 独特的数据结构

1.1 为什么使用Pandas

Numpy已经能够帮助我们处理数据,能够结合matplotlib解决部分数据展示等问题,那么pandas学习的目的在什么地方呢?

  • (1)增强图表可读性
    • 在numpy当中创建学生成绩表样式:
    • 返回结果:
array([[92, 55, 78, 50, 50],
       [71, 76, 50, 48, 96],
       [45, 84, 78, 51, 68],
       [81, 91, 56, 54, 76],
       [86, 66, 77, 67, 95],
       [46, 86, 56, 61, 99],
       [46, 95, 44, 46, 56],
       [80, 50, 45, 65, 57],
       [41, 93, 90, 41, 97],
       [65, 83, 57, 57, 40]])

如果数据展示为这样,可读性就会更友好:

  • (2)便捷的数据处理能力
  • (3)读取文件方便
  • (4)封装了Matplotlib、Numpy的画图和计算

1.2 Pandas数据结构

Pandas中一共有三种数据结构,分别为:Series、DataFrame和MultiIndex(老版本中叫Panel )。

其中Series是一维数据结构,DataFrame是二维的表格型数据结构,MultiIndex是三维的数据结构。

1.2.1 Series

Series是一个类似于一维数组的数据结构,它能够保存任何类型的数据,比如整数、字符串、浮点数等,主要由一组数据和与之相关的索引两部分构成。

(1)Series的创建
# 导入pandas
import pandas as pd

pd.Series(data=None, index=None, dtype=None)
  • 参数:
    • data:传入的数据,可以是ndarray、list等
    • index:索引,必须是唯一的,且与数据的长度相等。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
    • dtype:数据的类型

通过已有数据创建:

  • (1)指定内容,默认索引:
pd.Series(np.arange(10))
# 运行结果
0    0
1    1
2    2
3    3
4    4
5    5
6    6
7    7
8    8
9    9
dtype: int64
  • (2)指定索引:
pd.Series([6.7,5.6,3,10,2], index=[1,2,3,4,5])
# 运行结果
1     6.7
2     5.6
3     3.0
4    10.0
5     2.0
dtype: float64
  • (3)通过字典数据创建
color_count = pd.Series({'red':100, 'blue':200, 'green': 500, 'yellow':1000})
color_count
# 运行结果
blue       200
green      500
red        100
yellow    1000
dtype: int64
(2)Series的属性

为了更方便地操作Series对象中的索引和数据,Series中提供了两个属性index和values:

  • index:
color_count = pd.Series({'red':100, 'blue':200, 'green': 500, 'yellow':1000})

color_count.index

# 结果
Index(['blue', 'green', 'red', 'yellow'], dtype='object')
  • values:
color_count.values

# 结果
array([ 200,  500,  100, 1000])

也可以使用索引来获取数据:

color_count[2]

# 结果
100

1.2.2 DataFrame

DataFrame是一个类似于二维数组或表格(如excel)的对象,既有行索引,又有列索引:

  • 行索引,表明不同行,横向索引,叫index,0轴,axis=0
  • 列索引,表名不同列,纵向索引,叫columns,1轴,axis=1
(1)DataFrame的创建
# 导入pandas
import pandas as pd

pd.DataFrame(data=None, index=None, columns=None)
  • 参数:
    • index:行标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
    • columns:列标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
  • 通过已有数据创建

举例一:

pd.DataFrame(np.random.randn(2,3))

结果:

举例二:创建学生成绩表

使用np创建的数组显示方式,比较两者的区别。

# 生成10名同学,5门功课的数据
score = np.random.randint(40, 100, (10, 5))#均匀分布

# 结果
array([[92, 55, 78, 50, 50],
       [71, 76, 50, 48, 96],
       [45, 84, 78, 51, 68],
       [81, 91, 56, 54, 76],
       [86, 66, 77, 67, 95],
       [46, 86, 56, 61, 99],
       [46, 95, 44, 46, 56],
       [80, 50, 45, 65, 57],
       [41, 93, 90, 41, 97],
       [65, 83, 57, 57, 40]])

但是这样的数据形式很难看到存储的是什么的样的数据,可读性比较差!!

问题:如何让数据更有意义的显示?

# 使用Pandas中的数据结构
score_df = pd.DataFrame(score)

结果:

给分数数据增加行列索引,显示效果更佳:

  • 增加行、列索引:
# 构造行索引序列
subjects = ["语文", "数学", "英语", "政治", "体育"]

# 构造列索引序列
stu = ['同学' + str(i) for i in range(score_df.shape[0])]

# 添加行索引
data = pd.DataFrame(score, columns=subjects, index=stu)

结果:

(2)DataFrame的属性
  • (1)shape
data.shape

# 结果
(10, 5)
  • (2)index

DataFrame的行索引列表

data.index

# 结果
Index(['同学0', '同学1', '同学2', '同学3', '同学4', '同学5', '同学6', '同学7', '同学8', '同学9'], dtype='object')
  • (3)columns

DataFrame的列索引列表

data.columns

# 结果
Index(['语文', '数学', '英语', '政治', '体育'], dtype='object')
  • (4)values

直接获取其中array的值

array([[54, 82, 62, 81, 47],
       [50, 58, 73, 72, 48],
       [88, 89, 49, 99, 83],
       [79, 81, 69, 45, 87],
       [87, 64, 62, 74, 85],
       [68, 56, 58, 77, 53],
       [77, 49, 82, 48, 82],
       [96, 49, 67, 94, 71],
       [98, 77, 44, 99, 41],
       [71, 52, 74, 90, 44]])
  • (5)T

转置

data.T

结果:

  • (6)head(5):显示前5行内容

如果不补充参数,默认5行。填入参数N则显示前N行

data.head(5)

结果:

  • (7)tail(5):显示后5行内容

如果不补充参数,默认5行。填入参数N则显示后N行

data.tail(5)

结果:

(3)DatatFrame索引的设置

现在要将下图的行索引改变,变成下下图所示样子,怎么做呢?

  • (1)修改行列索引值
stu = ["学同学_" + str(i) for i in range(score_df.shape[0])]

# 必须整体全部修改
data.index = stu

注意:以下修改方式是错误的,说明不能单独修改

# 错误修改方式,不能单个修改
data.index[3] = '学生_3'
  • (2)重设索引
    • 设置新的下标索引
    • drop:默认为False,不删除原来索引,如果为True,删除原来的索引值
    • reset_index(drop=False)
# 重置索引,drop=False
data.reset_index()

结果:

# 重置索引,drop=True
data.reset_index()

结果:

  • (3)以某列值设置为新的索引
  • set_index(keys, drop=True)
    • keys : 列索引名成或者列索引名称的列表
    • drop : boolean, default True.当做新的索引,删除原来的列

设置新索引案例:

1、创建

df = pd.DataFrame({'month': [1, 4, 7, 10],
                    'year': [2012, 2014, 2013, 2014],
                    'sale':[55, 40, 84, 31]})

   month  sale  year
0  1      55    2012
1  4      40    2014
2  7      84    2013
3  10     31    2014

2、以月份设置新的索引

df.set_index('month')
       sale  year
month
1      55    2012
4      40    2014
7      84    2013
10     31    2014

3、设置多个索引,以年和月份

df = df.set_index(['year', 'month'])
df
            sale
year  month
2012  1     55
2014  4     40
2013  7     84
2014  10    31

注:通过刚才的设置,这样DataFrame就变成了一个具有MultiIndex的DataFrame。

1.2.3 MultiIndex与Panel

(1)MultiIndex

MultiIndex是三维的数据结构;

多级索引(也称层次化索引)是pandas的重要功能,可以在Series、DataFrame对象上拥有2个以及2个以上的索引。

  • (1)multiIndex的特性

打印刚才的df的行索引结果

df
            sale
year  month
2012  1     55
2014  4     40
2013  7     84
2014  10    31

df.index

MultiIndex(levels=[[2012, 2013, 2014], [1, 4, 7, 10]],
           labels=[[0, 2, 1, 2], [0, 1, 2, 3]],
           names=['year', 'month'])

多级或分层索引对象。

  • index属性
    • names:levels的名称
    • levels:每个level的元组值
df.index.names
# FrozenList(['year', 'month'])

df.index.levels
# FrozenList([[2012, 2013, 2014], [1, 4, 7, 10]])
  • (2)multiIndex的创建
arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))

# 结果
MultiIndex(levels=[[1, 2], ['blue', 'red']],
           codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
           names=['number', 'color'])
(2)Panel
  • (1)panel的创建
    • 作用:存储3维数组的Panel结构
    • 参数:
    • data : ndarray或者dataframe
    • items : 索引或类似数组的对象,axis=0
    • major_axis : 索引或类似数组的对象,axis=1
    • minor_axis : 索引或类似数组的对象,axis=2
    • class pandas.Panel(data=None, items=None, major_axis=None, minor_axis=None)
p = pd.Panel(data=np.arange(24).reshape(4,3,2),
                 items=list('ABCD'),
                 major_axis=pd.date_range('20130101', periods=3),
                 minor_axis=['first', 'second'])

# 结果
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second
  • (2)查看panel数据
p[:,:,"first"]
p["B",:,:]

注:Pandas从版本0.20.0开始弃用:推荐的用于表示3D数据的方法是通过DataFrame上的MultiIndex方法。

2、基本数据操作

为了更好的理解这些基本操作,我们将读取一个真实的股票数据。关于文件操作,后面在介绍,这里只先用一下API。

# 读取文件
data = pd.read_csv("./data/stock_day.csv")

# 删除一些列,让数据更简单些,再去做后面的操作
data = data.drop(["ma5","ma10","ma20","v_ma5","v_ma10","v_ma20"], axis=1)

2.1 索引操作

Numpy当中我们已经讲过使用索引选取序列和切片选择,pandas也支持类似的操作,也可以直接使用列名、行名称,甚至组合使用。

2.2.1 直接使用行列索引(先列后行)

获取’2018-02-27’这天的’open’的结果:

# 直接使用行列索引名字的方式(先列后行)
data['open']['2018-02-27']
23.53

# 不支持的操作
# 错误
data['2018-02-27']['open']
# 错误
data[:1, :2]

2.2.2 结合loc或者iloc使用索引

获取从’2018-02-27’到’2018-02-22’,'open’的结果:

# 使用loc:只能指定行列索引的名字
data.loc['2018-02-27':'2018-02-22', 'open']

2018-02-27    23.53
2018-02-26    22.80
2018-02-23    22.88
Name: open, dtype: float64

# 使用iloc可以通过索引的下标去获取
# 获取前3天数据,前5列的结果
data.iloc[:3, :5]

            open    high    close    low
2018-02-27    23.53    25.88    24.16    23.53
2018-02-26    22.80    23.78    23.53    22.80
2018-02-23    22.88    23.37    22.82    22.71

2.2.3 使用ix组合索引(混合索引:下标和名称)

获取行第1天到第4天,[‘open’, ‘close’, ‘high’, ‘low’]这个四个指标的结果:

# 使用ix进行下表和名称组合做引
data.ix[0:4, ['open', 'close', 'high', 'low']]

# 推荐使用loc和iloc来获取的方式
data.loc[data.index[0:4], ['open', 'close', 'high', 'low']]
data.iloc[0:4, data.columns.get_indexer(['open', 'close', 'high', 'low'])]

            open    close    high    low
2018-02-27    23.53    24.16    25.88    23.53
2018-02-26    22.80    23.53    23.78    22.80
2018-02-23    22.88    22.82    23.37    22.71
2018-02-22    22.25    22.28    22.76    22.02

2.2 赋值操作

对DataFrame当中的close列进行重新赋值为1。

# 直接修改原来的值
data['close'] = 1 # 这一列都变成1
# 或者
data.close = 1

2.3 排序

排序有两种形式,一种对于索引进行排序,一种对于内容进行排序:

2.3.1 DataFrame排序

  • (1)使用df.sort_values(by=, ascending=)
    • by:指定排序参考的键
    • ascending:默认升序
    • ascending=False:降序
    • ascending=True:升序
    • 单个键或者多个键进行排序,
    • 参数:

如下:

例一:

# 按照开盘价大小进行排序 , 使用ascending指定按照大小排序
data.sort_values(by="open", ascending=True).head()

结果:

例二:

# 按照多个键进行排序
data.sort_values(by=['open', 'high'])

结果:

  • (2)使用df.sort_index(ascending=)给索引进行排序

这个股票的日期索引原来是从大到小,现在重新排序,从小到大:

# 对索引进行排序
data.sort_index()

结果:

2.3.2 Series排序

  • (1)使用series.sort_values(ascending=True)进行排序

series排序时,只有一列,不需要参数

data['p_change'].sort_values(ascending=True).head()

2015-09-01   -10.03
2015-09-14   -10.02
2016-01-11   -10.02
2015-07-15   -10.02
2015-08-26   -10.01
Name: p_change, dtype: float64
  • (2)使用series.sort_index()进行排序

与df一致

# 对索引进行排序
data['p_change'].sort_index().head()

2015-03-02    2.62
2015-03-03    1.44
2015-03-04    1.57
2015-03-05    2.02
2015-03-06    8.51
Name: p_change, dtype: float64

2.4 总结

3、DataFrame运算

3.1 算术运算

  • (1)add(other)

比如进行数学运算加上具体的一个数字

data['open'].head().add(1)

2018-02-27    24.53
2018-02-26    23.80
2018-02-23    23.88
2018-02-22    23.25
2018-02-14    22.49
Name: open, dtype: float64
  • (2)sub(other)

整个列减一个数

data.open.head().sub(2)

2018-02-27    21.53
2018-02-26    20.80
2018-02-23    20.88
2018-02-22    20.25
2018-02-14    19.49
Name: open, dtype: float64

3.2 逻辑运算

3.2.1 逻辑运算符号

  • 例如筛选data[“open”] > 23的日期数据
    • data[“open”] > 23返回逻辑结果
data["open"] > 23

2018-02-27     True
2018-02-26    False
2018-02-23    False
2018-02-22    False
2018-02-14    False
# 逻辑判断的结果可以作为筛选的依据
data[data["open"] > 23].head()

结果:

  • 完成多个逻辑判断:
data[(data["open"] > 23) & (data["open"] < 24)].head()

3.2.2 逻辑运算函数

  • (1)query(expr)
    • expr:查询字符串

通过query使得刚才的过程更加方便简单,下面是使用的例子:

data.query("open<24 & open>23").head()

结果:

  • (2)isin(values)

例如判断’open’是否为23.53和23.85:

# 可以指定值进行一个判断,从而进行筛选操作
data[data["open"].isin([23.53, 23.85])]

3.2.3 统计运算

(1)describe

综合分析: 能够直接得出很多统计结果,count, mean, std, min, max 等

# 计算平均值、标准差、最大值、最小值
data.describe()
(2)统计函数

看一下min(最小值), max(最大值), mean(平均值), median(中位数), var(方差), std(标准差),mode(众数)是怎么操作的:

对于单个函数去进行统计的时候,坐标轴还是按照默认列“columns” (axis=0, default),如果要对行“index” 需要指定(axis=1)。

  • (1)max()、min()
# 使用统计函数:0 代表列求结果, 1 代表行求统计结果
data.max(axis=0) # 最大值

open                   34.99
high                   36.35
close                  35.21
low                    34.01
volume             501915.41
price_change            3.03
p_change               10.03
turnover               12.56
my_price_change         3.41
dtype: float64
  • (2)std()、var()
# 方差
data.var(axis=0)

open               1.545255e+01
high               1.662665e+01
close              1.554572e+01
low                1.437902e+01
volume             5.458124e+09
price_change       8.072595e-01
p_change           1.664394e+01
turnover           4.323800e+00
my_price_change    6.409037e-01
dtype: float64

# 标准差
data.std(axis=0)

open                   3.930973
high                   4.077578
close                  3.942806
low                    3.791968
volume             73879.119354
price_change           0.898476
p_change               4.079698
turnover               2.079375
my_price_change        0.800565
dtype: float64
  • (3)median():中位数

中位数为将数据从小到大排列,在最中间的那个数为中位数。如果没有中间数,取中间两个数的平均值。

data.median(axis=0)

open               21.44
high               21.97
close              10.00
low                20.98
volume          83175.93
price_change        0.05
p_change            0.26
turnover            2.50
dtype: float64
  • (4)idxmax()、idxmin()
# 求出最大值的位置
data.idxmax(axis=0)

open               2015-06-15
high               2015-06-10
close              2015-06-12
low                2015-06-12
volume             2017-10-26
price_change       2015-06-09
p_change           2015-08-28
turnover           2017-10-26
my_price_change    2015-07-10
dtype: object


# 求出最小值的位置
data.idxmin(axis=0)

open               2015-03-02
high               2015-03-02
close              2015-09-02
low                2015-03-02
volume             2016-07-06
price_change       2015-06-15
p_change           2015-09-01
turnover           2016-07-06
my_price_change    2015-06-15
dtype: object
(3)累计统计函数

那么这些累计统计函数怎么用?

以上这些函数可以对series和dataframe操作,这里我们按照时间的从前往后来进行累计

  • 排序
# 排序之后,进行累计求和
data = data.sort_index()
  • 对p_change进行求和
stock_rise = data['p_change']

stock_rise.cumsum()

2015-03-02      2.62
2015-03-03      4.06
2015-03-04      5.63
2015-03-05      7.65
2015-03-06     16.16
2015-03-09     16.37
2015-03-10     18.75
2015-03-11     16.36
2015-03-12     15.03
2015-03-13     17.58
2015-03-16     20.34
2015-03-17     22.42
2015-03-18     23.28
2015-03-19     23.74
2015-03-20     23.48
2015-03-23     23.74

那么如何让这个连续求和的结果更好的显示呢?

如果要使用plot函数,需要导入matplotlib.下面是绘图代码:

import matplotlib.pyplot as plt
# plot显示图形, plot方法集成了直方图、条形图、饼图、折线图
stock_rise.cumsum().plot()
# 需要调用show,才能显示出结果
plt.show()

结果:

关于plot,稍后会介绍API的选择。

(4)自定义运算
  • apply(func, axis=0)
    • func:自定义函数
    • axis=0:默认是列,axis=1为行进行运算
  • 定义一个对列,最大值-最小值的函数

下面看个例子:

data[['open', 'close']].apply(lambda x: x.max() - x.min(), axis=0)

open     22.74
close    22.85
dtype: float64

特定需求需要用这个。

4、Pandas画图

4.1 pandas.DataFrame.plot

  • DataFrame.plot(kind='line')
    • ‘line’ : 折线图
    • ‘bar’ : 条形图
    • ‘barh’ : 横放的条形图
    • ‘hist’ : 直方图
    • ‘pie’ : 饼图
    • ‘scatter’ : 散点图
    • kind : str,需要绘制图形的种类

关于“barh”的解释: http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.barh.html

更多细节:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html?highlight=plot#pandas.DataFrame.plot

看个例子:

import matplotlib.pyplot as plt
# plot显示图形, plot方法集成了直方图、条形图、饼图、折线图
stock_rise.cumsum().plot(kind="line")
# 需要调用show,才能显示出结果
plt.show()

结果:

4.2 pandas.Series.plot

更多细节:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.plot.html?highlight=plot#pandas.Series.plot

注:使用的时候查看。

5、文件读取与存储

我们的数据大部分存在于文件当中,所以pandas会支持复杂的IO操作,pandas的API支持众多的文件格式,如CSV、SQL、XLS、JSON、HDF5。

注:最常用的HDF5和CSV文件

接下来重点看一下,应用CSV方式、HDF方式和json方式实现文件的读取和存储。

5.1 CSV

5.1.1 read_csv

  • pandas.read_csv(filepath_or_buffer, sep =',', usecols )
    • filepath_or_buffer:文件路径
    • sep :分隔符,默认用","隔开
    • usecols:指定读取的列名,列表形式

举例:读取之前的股票的数据:

# 读取文件,并且指定只获取'open', 'close'指标
data = pd.read_csv("./data/stock_day.csv", usecols=['open', 'close'])

            open    close
2018-02-27    23.53    24.16
2018-02-26    22.80    23.53
2018-02-23    22.88    22.82
2018-02-22    22.25    22.28
2018-02-14    21.49    21.92

5.1.2 to_csv

  • DataFrame.to_csv(path_or_buf=None, sep=', ’, columns=None, header=True, index=True, mode='w', encoding=None)
    • path_or_buf :文件路径
    • sep :分隔符,默认用","隔开
    • columns :选择需要的列索引
    • header :boolean or list of string, default True,是否写进列索引值
    • index:是否写进行索引
    • mode:‘w’:重写, ‘a’ 追加

举例:保存读取出来的股票数据 保存’open’列的数据,然后读取查看结果:

# 选取10行数据保存,便于观察数据
data[:10].to_csv("./data/test.csv", columns=['open'])

# 读取,查看结果
pd.read_csv("./data/test.csv")

     Unnamed: 0    open
0    2018-02-27    23.53
1    2018-02-26    22.80
2    2018-02-23    22.88
3    2018-02-22    22.25
4    2018-02-14    21.49
5    2018-02-13    21.40
6    2018-02-12    20.70
7    2018-02-09    21.20
8    2018-02-08    21.79
9    2018-02-07    22.69

会发现将索引存入到文件当中,变成单独的一列数据。如果需要删除,可以指定index参数,删除原来的文件,重新保存一次。

下面例子把index指定为False,那么保存的时候就不会保存行索引了:

# index:存储不会将索引值变成一列数据
data[:10].to_csv("./data/test.csv", columns=['open'], index=False)

当然我们也可以这么做,就是把索引保存到文件中,读取的时候变成了一列,那么可以把这个列再变成索引,如下:

# 把Unnamed: 0这一列,变成行索引
open.set_index(["Unnamed: 0"])

# 把索引名字变成index
open.index.name = "index"

5.2 HDF5

5.2.1 read_hdf与to_hdf

HDF5文件的读取和存储需要指定一个键,值为要存储的DataFrame

  • (1)pandas.read_hdf(path_or_buf,key =None,** kwargs)
    • path_or_buffer:文件路径
    • key:读取的键
    • return:Theselected object
  • (2)DataFrame.to_hdf(path_or_buf, key, **kwargs)

5.2.2 案例

  • 读取文件
day_close = pd.read_hdf("./data/day_close.h5")

如果读取的时候出现以下错误

需要安装安装tables模块避免不能读取HDF5文件

pip install tables
  • 存储文件
day_close.to_hdf("./data/test.h5", key="day_close")

再次读取的时候, 需要指定键的名字

new_close = pd.read_hdf("./data/test.h5", key="day_close")

注意:优先选择使用HDF5文件存储

  • HDF5在存储的时候支持压缩,使用的方式是blosc,这个是速度最快的也是pandas默认支持的
  • 使用压缩可以提磁盘利用率,节省空间
  • HDF5还是跨平台的,可以轻松迁移到hadoop 上面

5.3 JSON

JSON是我们常用的一种数据交换格式,在前后端的交互经常用到,也会在存储的时候选择这种格式。所以我们需要知道Pandas如何进行读取和存储JSON格式。

5.3.1 read_json

  • pandas.read_json(path_or_buf=None, orient=None, typ='frame', lines=False)
    • 按照每行读取json对象
    • (1)‘split’ : dict like {index -> [index], columns -> [columns], data -> [values]}
    • (2)‘records’ : list like [{column -> value}, … , {column -> value}]
    • (3)‘index’ : dict like {index -> {column -> value}}
    • (4)‘columns’ : dict like {column -> {index -> value}},默认该格式
    • (5)‘values’ : just the values array
    • split 将索引总结到索引,列名到列名,数据到数据。将三部分都分开了
    • records 以columns:values的形式输出
    • index 以index:{columns:values}…的形式输出
    • colums 以columns:{index:values}的形式输出
    • values 直接输出值
    • path_or_buf : 路径
    • orient : string,以什么样的格式显示.下面是5种格式:
    • lines : boolean, default False
    • typ : default ‘frame’, 指定转换成的对象类型series或者dataframe

案例:

  • 数据介绍:

这里使用一个新闻标题讽刺数据集,格式为json。is_sarcastic:1讽刺的,否则为0;headline:新闻报道的标题;article_link:链接到原始新闻文章。存储格式为:

{"article_link": "https://www.huffingtonpost.com/entry/versace-black-code_us_5861fbefe4b0de3a08f600d5", "headline": "former versace store clerk sues over secret 'black code' for minority shoppers", "is_sarcastic": 0}
{"article_link": "https://www.huffingtonpost.com/entry/roseanne-revival-review_us_5ab3a497e4b054d118e04365", "headline": "the 'roseanne' revival catches up to our thorny political mood, for better and worse", "is_sarcastic": 0}
  • 读取

orient指定存储的json格式,lines指定按照行去变成一个样本:

json_read = pd.read_json("./data/Sarcasm_Headlines_Dataset.json", orient="records", lines=True)

结果为:

5.3.2 to_json

  • DataFrame.to_json(path_or_buf=None, orient=None, lines=False)
    • 将Pandas 对象存储为json格式
    • path_or_buf=None:文件地址
    • orient:存储的json形式,{‘split’,’records’,’index’,’columns’,’values’}
    • lines:一个对象存储为一行

案例:

  • 存储文件
# 不指定lines=Treu,则保存成一行
json_read.to_json("./data/test.json", orient='records')

结果:

[{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/versace-black-code_us_5861fbefe4b0de3a08f600d5","headline":"former versace store clerk sues over secret 'black code' for minority shoppers","is_sarcastic":0},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/roseanne-revival-review_us_5ab3a497e4b054d118e04365","headline":"the 'roseanne' revival catches up to our thorny political mood, for better and worse","is_sarcastic":0},{"article_link":"https:\/\/local.theonion.com\/mom-starting-to-fear-son-s-web-series-closest-thing-she-1819576697","headline":"mom starting to fear son's web series closest thing she will have to grandchild","is_sarcastic":1},{"article_link":"https:\/\/politics.theonion.com\/boehner-just-wants-wife-to-listen-not-come-up-with-alt-1819574302","headline":"boehner just wants wife to listen, not come up with alternative debt-reduction ideas","is_sarcastic":1},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/jk-rowling-wishes-snape-happy-birthday_us_569117c4e4b0cad15e64fdcb","headline":"j.k. rowling wishes snape happy birthday in the most magical way","is_sarcastic":0},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/advancing-the-worlds-women_b_6810038.html","headline":"advancing the world's women","is_sarcastic":0},....]
  • 修改lines参数为True
# 指定lines=True,则多行存储
json_read.to_json("./data/test.json", orient='records', lines=True)

结果:

{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/versace-black-code_us_5861fbefe4b0de3a08f600d5","headline":"former versace store clerk sues over secret 'black code' for minority shoppers","is_sarcastic":0}
{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/roseanne-revival-review_us_5ab3a497e4b054d118e04365","headline":"the 'roseanne' revival catches up to our thorny political mood, for better and worse","is_sarcastic":0}
{"article_link":"https:\/\/local.theonion.com\/mom-starting-to-fear-son-s-web-series-closest-thing-she-1819576697","headline":"mom starting to fear son's web series closest thing she will have to grandchild","is_sarcastic":1}
{"article_link":"https:\/\/politics.theonion.com\/boehner-just-wants-wife-to-listen-not-come-up-with-alt-1819574302","headline":"boehner just wants wife to listen, not come up with alternative debt-reduction ideas","is_sarcastic":1}
{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/jk-rowling-wishes-snape-happy-birthday_us_569117c4e4b0cad15e64fdcb","headline":"j.k. rowling wishes snape happy birthday in the most magical way","is_sarcastic":0}...

6、高级处理-缺失值处理

在pandas中,缺失值使用NaN来标记,如下图所示:

6.1 如何处理nan

按如下步骤进行:

  • (1)获取缺失值的标记方式(NaN或者其他标记方式)
  • (2)如果缺失值的标记方式是NaN
    • 1、删除存在缺失值的:dropna(axis='rows') 注:不会修改原数据,需要接受返回值
    • 2、替换缺失值:fillna(value, inplace=True)
    • value:替换成的值
    • inplace:True:会修改原数据,False:不替换修改原数据,生成新的对象
    • pd.isnull(df),
    • pd.notnull(df)
    • 判断数据中是否包含NaN:
    • 存在缺失值nan:
  • (3)如果缺失值没有使用NaN标记,比如使用"?"
    • 先替换‘?’为np.nan,然后继续处理

步骤就是上面的这样,下面通过例子来看看怎么使用pandas处理的:

6.2 电影数据的缺失值处理

  • 电影数据文件获取
# 读取电影数据
movie = pd.read_csv("./data/IMDB-Movie-Data.csv")

6.2.1 判断缺失值是否存在

  • (1)pd.notnull()
# 判断是否是缺失值,是则返回False
pd.notnull(movie)

# 结果:
Rank    Title    Genre    Description    Director    Actors    Year    Runtime (Minutes)    Rating    Votes    Revenue (Millions)    Metascore
0    True    True    True    True    True    True    True    True    True    True    True    True
1    True    True    True    True    True    True    True    True    True    True    True    True
2    True    True    True    True    True    True    True    True    True    True    True    True
3    True    True    True    True    True    True    True    True    True    True    True    True
4    True    True    True    True    True    True    True    True    True    True    True    True
5    True    True    True    True    True    True    True    True    True    True    True    True
6    True    True    True    True    True    True    True    True    True    True    True    True
7    True    True    True    True    True    True    True    True    True    True    False    True

但是上面这样显然不好观察,我们可以借助np.all()来返回是否有缺失值。np.all()只要有一个就返回False,下面看例子:

np.all(pd.notnull(movie))

# 返回
False
  • (2)pd.isnull() 这个和上面的正好相反,判断是否是缺失值,是则返回True。
# 判断是否是缺失值,是则返回True
pd.isnull(movie).head()

# 结果:
 Rank Title Genre Description Director Actors Year Runtime (Minutes) Rating Votes Revenue (Millions) Metascore
0 False False False False False False False False False False False False
1 False False False False False False False False False False False False
2 False False False False False False False False False False False False
3 False False False False False False False False False False False False
4 False False False False False False False False False False False False

这个也不好观察,我们利用np.any() 来判断是否有缺失值,若有则返回True,下面看例子:

np.any(pd.isnull(movie))
# 返回
True

6.2.2 存在缺失值nan,并且是np.nan

  • 1、删除

pandas删除缺失值,使用dropna的前提是,缺失值的类型必须是np.nan

# 不修改原数据
movie.dropna()

# 可以定义新的变量接受或者用原来的变量名
data = movie.dropna()
  • 2、替换缺失值
# 替换存在缺失值的样本的两列
# 替换填充平均值,中位数
movie['Revenue (Millions)'].fillna(movie['Revenue (Millions)'].mean(), inplace=True)

替换所有缺失值:

# 这个循环,每次取出一列数据,然后用均值来填充
for i in movie.columns:
    if np.all(pd.notnull(movie[i])) == False:
        print(i)
        movie[i].fillna(movie[i].mean(), inplace=True)

6.2.3 不是缺失值nan,有默认标记的

直接看例子:

数据是这样的:

# 读入数据
wis = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data")

以上数据在读取时,可能会报如下错误:

URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:833)>

解决办法:

# 全局取消证书验证
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

处理思路分析:

  • 1、先替换‘?’为np.nan
    • to_replace:替换前的值
    • value:替换后的值
    • df.replace(to_replace=, value=)
# 把一些其它值标记的缺失值,替换成np.nan
wis = wis.replace(to_replace='?', value=np.nan)
  • 2、再进行缺失值的处理
# 删除
wis = wis.dropna()
  • 3、验证:
np.all(pd.notnull(wis))
# 返回True,说明没有了缺失值

# 或者

np.any(pd.isnull(wis))
# 返回False,说明没有了缺失值

7、高级处理-数据离散化

7.1 为什么要离散化

连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具。

7.2 什么是数据的离散化

连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值。

离散化有很多种方法,这里使用一种最简单的方式去操作:

  • 原始人的身高数据:165,174,160,180,159,163,192,184
  • 假设按照身高分几个区间段:150~165, 165~180,180~195

这样我们将数据分到了三个区间段,对应的标记为矮、中、高三个类别,最终要处理成一个"哑变量"矩阵。

下面通过股票数据的例子来看看,具体是怎么操作的。

7.3 股票的涨跌幅离散化

我们对股票每日的"p_change"这一列进行离散化,下图便是离散化后的结果,当前数据存在哪个区间,则这个区间标记为1,否则为0。

那具体怎么做的呢?接着看:

7.3.1 读取股票的数据

先读取股票的数据,筛选出p_change数据。

data = pd.read_csv("./data/stock_day.csv")
p_change= data['p_change']

7.3.2 将股票涨跌幅数据进行分组

下面是所在区间的个数。

使用的工具:

  • pd.qcut(data, q)
    • 对数据进行分组,将数据分成q组,一般会与value_counts搭配使用,统计每组的个数
  • series.value_counts():统计每个分组中有多少数据。
# 自行分组
qcut = pd.qcut(p_change, 10)
# 计算分到每个组数据个数
qcut.value_counts()

# 运行结果:
(5.27, 10.03]                    65
(0.26, 0.94]                     65
(-0.462, 0.26]                   65
(-10.030999999999999, -4.836]    65
(2.938, 5.27]                    64
(1.738, 2.938]                   64
(-1.352, -0.462]                 64
(-2.444, -1.352]                 64
(-4.836, -2.444]                 64
(0.94, 1.738]                    63
Name: p_change, dtype: int64

自定义区间分组:

  • pd.cut(data, bins)
# 自己指定分组区间
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)
p_counts.value_counts()

# 运行结果:
(0, 3]        215
(-3, 0]       188
(3, 5]         57
(-5, -3]       51
(7, 100]       35
(5, 7]         35
(-100, -7]     34
(-7, -5]       28
Name: p_change, dtype: int64

7.3.3 股票涨跌幅分组数据变成one-hot编码

  • 什么是one-hot编码 把每个类别生成一个布尔列,这些列中只有一列可以为这个样本取值为1.其又被称为热编码。

把下图中左边的表格转化为使用右边形式进行表示:

下面看看pandas中是怎么实现的:

  • pandas.get_dummies(data, prefix=None)
    • data:array-like, Series, or DataFrame
    • prefix:分组名字

下面是例子:

# 得出one-hot编码矩阵
dummies = pd.get_dummies(p_counts, prefix="rise")

运行结果:

8、高级处理-合并

如果你的数据由多张表组成,那么有时候需要将不同的内容合并在一起分析

8.1 pd.concat实现数据合并

  • pd.concat([data1, data2], axis=1)
    • 按照行或列进行合并,axis=0为列索引,axis=1为行索引

比如我们将刚才处理好的one-hot编码与原数据合并:

# 按照行索引进行
pd.concat([data, dummies], axis=1)

结果:

8.2 pd.merge

  • pd.merge(left, right, how='inner', on=None)
    • 可以指定按照两组数据的共同键值对合并或者左右各自
    • left: DataFrame
    • right: 另一个DataFrame
    • on: 指定的共同键
    • how:按照什么方式连接,下面的表格是说明

例子:

left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                        'key2': ['K0', 'K1', 'K0', 'K1'],
                        'A': ['A0', 'A1', 'A2', 'A3'],
                        'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                        'key2': ['K0', 'K0', 'K0', 'K0'],
                        'C': ['C0', 'C1', 'C2', 'C3'],
                        'D': ['D0', 'D1', 'D2', 'D3']})
  • 内连接:健相同的取上,不同的删掉
# 默认内连接
result = pd.merge(left, right, on=['key1', 'key2'])

结果:

  • 左连接:按左边的数据进行合并
result = pd.merge(left, right, how='left', on=['key1', 'key2'])

结果:

  • 右连接:按右边的数据进行合并
result = pd.merge(left, right, how='right', on=['key1', 'key2'])
  • 链接:无论健是否相同都取上,对应不上的使用NaN填充。
result = pd.merge(left, right, how='outer', on=['key1', 'key2'])

结果:

9、高级处理-交叉表与透视表

9.1 交叉表与透视表什么作用

探究股票的涨跌与星期几有关?

以下图当中表示,week代表星期几,1,0代表这一天股票的涨跌幅是好还是坏,里面的数据代表比例

可以理解为所有时间为星期一等等的数据当中涨跌幅好坏的比例

  • 交叉表:交叉表用于计算一列数据对于另外一列数据的分组个数(用于统计分组频率的特殊透视表)
    • pd.crosstab(value1, value2)
  • 透视表:透视表是将原有的DataFrame的列分别作为行索引和列索引,然后对指定的列应用聚集函数
    • data.pivot_table()
    • DataFrame.pivot_table([], index=[])

9.2 案例分析

9.2.1 数据准备

  • 准备两列数据,星期数据以及涨跌幅是好是坏数据
  • 进行交叉表计算
# 寻找星期几跟股票张得的关系
# 1、先把对应的日期找到星期几
date = pd.to_datetime(data.index).weekday
data['week'] = date  # 增加一列

# 2、假如把p_change按照大小去分个类0为界限
data['posi_neg'] = np.where(data['p_change'] > 0, 1, 0)

# 通过交叉表找寻两列数据的关系
count = pd.crosstab(data['week'], data['posi_neg'])

结果:

但是我们看到count只是每个星期日子的好坏天数,并没有得到比例,该怎么去做?

  • 对于每个星期一等的总天数求和,运用除法运算求出比例
# 算数运算,先求和
sum = count.sum(axis=1).astype(np.float32)

# 进行相除操作,得出比例
pro = count.div(sum, axis=0)

结果:

9.2.2 查看效果

使用plot画出这个比例,使用stacked的柱状图

pro.plot(kind='bar', stacked=True)
plt.show()

9.2.3 使用pivot_table(透视表)实现

使用透视表,刚才的过程更加简单

# 通过透视表,将整个过程变成更简单一些
data.pivot_table(['posi_neg'], index='week')

结果:

10、高级处理-分组与聚合

分组与聚合通常是分析数据的一种方式,通常与一些统计函数一起使用,查看数据的分组情况

10.1 什么分组与聚合

下图展示了分组与聚合的概念:

10.2 分组API

  • DataFrame.groupby(key, as_index=False)
    • key:分组的列数据,可以多个

案例:不同颜色的不同笔的价格数据

col =pd.DataFrame({'color': ['white','red','green','red','green'], 'object': ['pen','pencil','pencil','ashtray','pen'],'price1':[5.56,4.20,1.30,0.56,2.75],'price2':[4.75,4.12,1.60,0.75,3.15]})

# 结果:
color    object    price1    price2
0    white    pen    5.56    4.75
1    red    pencil    4.20    4.12
2    green    pencil    1.30    1.60
3    red    ashtray    0.56    0.75
4    green    pen    2.75    3.15
  • 进行分组,对颜色分组,price进行聚合:
# 按color分组,再取出price1列求平均值
col.groupby(['color'])['price1'].mean()
# 和上述一个功能
col['price1'].groupby(col['color']).mean()
# 结果:
color
green    2.025
red      2.380
white    5.560
Name: price1, dtype: float64

# 分组,数据的结构不变
col.groupby(['color'], as_index=False)['price1'].mean()
# 结果:
color    price1
0    green    2.025
1    red    2.380
2    white    5.560

10.3 星巴克零售店铺数据

现在我们有一组关于全球星巴克店铺的统计数据,如果我想知道美国的星巴克数量和中国的哪个多,或者我想知道中国每个省份星巴克的数量的情况,那么应该怎么办?

数据来源:https://www.kaggle.com/starbucks/store-locations/data

10.3.1 数据获取

从文件中读取星巴克店铺数据

# 导入星巴克店的数据
starbucks = pd.read_csv("./data/starbucks/directory.csv")

10.3.2 进行分组聚合

# 按照国家分组,求出每个国家的星巴克零售店数量
count = starbucks.groupby(['Country']).count()

画图显示结果:

count['Brand'].plot(kind='bar', figsize=(20, 8))
plt.show()

假设我们加入省市一起进行分组:

# 设置多个索引,set_index()
starbucks.groupby(['Country', 'State/Province']).count()

结果:

11、电影案例分析

11.1 需求

现在我们有一组从2006年到2016年1000部最流行的电影数据

数据来源:https://www.kaggle.com/damianpanek/sunday-eda/data

  • 问题1:我们想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?
  • 问题2:对于这一组电影数据,如果我们想rating,runtime的分布情况,应该如何呈现数据?
  • 问题3:对于这一组电影数据,如果我们希望统计电影分类(genre)的情况,应该如何处理数据?

11.2 实现

首先获取导入包,获取数据:

%matplotlib inline
import pandas  as pd 
import numpy as np
from matplotlib import pyplot as plt
#文件的路径
path = "./data/IMDB-Movie-Data.csv"
#读取文件
df = pd.read_csv(path)

11.2.1 问题一:

我们想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?

  • 得出评分的平均分

使用mean函数

df["Rating"].mean()

# 结果:
6.723200000000003
  • 得出导演人数信息

求出唯一值,然后进行形状获取

## 导演的人数
# df["Director"].unique().shape[0] # 方法一
np.unique(df["Director"]).shape[0] # 方法二

644

11.2.2 问题二:

对于这一组电影数据,如果我们想Rating的分布情况,应该如何呈现数据?

  • 直接呈现,以直方图的形式

选择分数列数据,进行plot

df["Rating"].plot(kind='hist',figsize=(20,8))
plt.show()

效果:

发现直接通过pandas的plot画图,显示的下标不合适,这个时候我们需要借助matplotlib来改变。

  • Rating进行分布展示

进行绘制直方图

# 1.添加画布
plt.figure(figsize=(20,8),dpi=100)

# 2.画图
plt.hist(df["Rating"].values,bins=20)
# 2.1 添加刻度线
max_ = df["Rating"].max()
min_ = df["Rating"].min()
x_ticks = np.linspace(min_, max_, num=21)
plt.xticks(x_ticks)
# 2.2添加网格线
plt.grid()

# 3.显示
plt.show()

数据分析:从上图中就可以发现,评分主要分布在5~8分之间

11.2.3 问题三:

对于这一组电影数据,如果我们希望统计电影分类(genre)的情况,应该如何处理数据?

  • 思路分析
    • 1、创建一个全为0的dataframe,列索引置为电影的分类,temp_df
    • 2、遍历每一部电影,temp_df中把分类出现的列的值置为1
    • 3、求和
    • 思路

下面接着看:

  • 1、创建一个全为0的dataframe,列索引置为电影的分类,temp_df
# 进行字符串分割
temp_list = [i.split(",") for i in df["Genre"]]
# 获取电影的分类
genre_list = np.unique([i for j in temp_list for i in j]) 

# 增加新的列,创建全为0的dataframe
temp_df = pd.DataFrame(np.zeros([df.shape[0],genre_list.shape[0]]),columns=genre_list)
  • 2、遍历每一部电影,temp_df中把分类出现的列的值置为1
for i in range(1000):
    #temp_list[i] 就是['Action','Adventure','Animation']等
    temp_df.ix[i,temp_list[i]]=1
    
print(temp_df.sum().sort_values()) # 求合并排序,ascending=False为倒序
  • 3、求和,绘图
temp_df.sum().sort_values(ascending=False).plot(kind="bar",figsize=(20,8),fontsize=20,colormap="cool")
plt.show()

结果:

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-08-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据分析1480 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、Pandas数据结构
    • 1.1 为什么使用Pandas
      • 1.2 Pandas数据结构
        • 1.2.1 Series
        • 1.2.2 DataFrame
        • 1.2.3 MultiIndex与Panel
    • 2、基本数据操作
      • 2.1 索引操作
        • 2.2.1 直接使用行列索引(先列后行)
        • 2.2.2 结合loc或者iloc使用索引
        • 2.2.3 使用ix组合索引(混合索引:下标和名称)
      • 2.2 赋值操作
        • 2.3 排序
          • 2.3.1 DataFrame排序
          • 2.3.2 Series排序
        • 2.4 总结
        • 3、DataFrame运算
          • 3.1 算术运算
            • 3.2 逻辑运算
              • 3.2.1 逻辑运算符号
              • 3.2.2 逻辑运算函数
              • 3.2.3 统计运算
          • 4、Pandas画图
            • 4.1 pandas.DataFrame.plot
              • 4.2 pandas.Series.plot
              • 5、文件读取与存储
                • 5.1 CSV
                  • 5.1.1 read_csv
                  • 5.1.2 to_csv
                • 5.2 HDF5
                  • 5.2.1 read_hdf与to_hdf
                  • 5.2.2 案例
                • 5.3 JSON
                  • 5.3.1 read_json
                  • 5.3.2 to_json
              • 6、高级处理-缺失值处理
                • 6.1 如何处理nan
                  • 6.2 电影数据的缺失值处理
                    • 6.2.1 判断缺失值是否存在
                    • 6.2.2 存在缺失值nan,并且是np.nan
                    • 6.2.3 不是缺失值nan,有默认标记的
                • 7、高级处理-数据离散化
                  • 7.1 为什么要离散化
                    • 7.2 什么是数据的离散化
                      • 7.3 股票的涨跌幅离散化
                        • 7.3.1 读取股票的数据
                        • 7.3.2 将股票涨跌幅数据进行分组
                        • 7.3.3 股票涨跌幅分组数据变成one-hot编码
                    • 8、高级处理-合并
                      • 8.1 pd.concat实现数据合并
                        • 8.2 pd.merge
                        • 9、高级处理-交叉表与透视表
                          • 9.1 交叉表与透视表什么作用
                            • 9.2 案例分析
                              • 9.2.1 数据准备
                              • 9.2.2 查看效果
                              • 9.2.3 使用pivot_table(透视表)实现
                          • 10、高级处理-分组与聚合
                            • 10.1 什么分组与聚合
                              • 10.2 分组API
                                • 10.3 星巴克零售店铺数据
                                  • 10.3.1 数据获取
                                  • 10.3.2 进行分组聚合
                              • 11、电影案例分析
                                • 11.1 需求
                                  • 11.2 实现
                                    • 11.2.1 问题一:
                                    • 11.2.2 问题二:
                                    • 11.2.3 问题三:
                                相关产品与服务
                                对象存储
                                对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
                                领券
                                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档