前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >谁是代码界3%的王者?- 第四题BigDecimal问题简单解读

谁是代码界3%的王者?- 第四题BigDecimal问题简单解读

作者头像
明明如月学长
发布2021-08-31 14:38:50
3260
发布2021-08-31 14:38:50
举报
文章被收录于专栏:明明如月的技术专栏

一、背景

阿里技术的公众发了一篇文章《谁是代码界3%的王者?》

提到“在Java代码界,有些陷阱外表看起来是个青铜实际上是王者,据说97%工程师会被“秒杀””

给出了五道题,非常考验基础。

本文简单解读第4题,并分享通用的学习和研究方法。

二、题目

题目配套代码

代码语言:javascript
复制
public class BigDecimalTest {
    public static void main(String[] args) {
        BigDecimal a = new BigDecimal(0.1);
        System.out.println(a);
        BigDecimal b = new BigDecimal("0.1");
        System.out.println(b);
    }
}

题目内容

下列哪种说法是正确的:

A: 两种赋值的方式是一样的 B: 推荐a的赋值方式 C: 推荐b的赋值方式

先公布答案:C

三、分析

3.1 直接运行看效果

上面源代码输出的效果如下

0.1000000000000000055511151231257827021181583404541015625 0.1

显然b是我们想要的效果

3.2 源代码大法

java.math.BigDecimal#BigDecimal(java.lang.String)

代码语言:javascript
复制
  /**
     * Translates the string representation of a {@code BigDecimal}
     * into a {@code BigDecimal}.  The string representation consists
     * of an optional sign, {@code '+'} ( '\u002B') or
     * {@code '-'} ('\u002D'), followed by a sequence of
     * zero or more decimal digits ("the integer"), optionally
     * followed by a fraction, optionally followed by an exponent.
     *
     * The fraction consists of a decimal point followed by zero
     * or more decimal digits.  The string must contain at least one
     * digit in either the integer or the fraction.  The number formed
     * by the sign, the integer and the fraction is referred to as the
     * significand.
     *
     * The exponent consists of the character {@code 'e'}
     * ('\u0065') or {@code 'E'} ('\u0045')
     * followed by one or more decimal digits.  The value of the
     * exponent must lie between -{@link Integer#MAX_VALUE} ({@link
     * Integer#MIN_VALUE}+1) and {@link Integer#MAX_VALUE}, inclusive.
     *
     * More formally, the strings this constructor accepts are
     * described by the following grammar:
     * 
     * 
     * BigDecimalString:
     * Signopt Significand Exponentopt
     * Sign:
     * {@code +}
     * {@code -}
     * Significand:
     * IntegerPart {@code .} FractionPartopt
     * {@code .} FractionPart
     * IntegerPart
     * IntegerPart:
     * Digits
     * FractionPart:
     * Digits
     * Exponent:
     * ExponentIndicator SignedInteger
     * ExponentIndicator:
     * {@code e}
     * {@code E}
     * SignedInteger:
     * Signopt Digits
     * Digits:
     * Digit
     * Digits Digit
     * Digit:
     * any character for which {@link Character#isDigit}
     * returns {@code true}, including 0, 1, 2 ...
     * 
     * 
     *
     * The scale of the returned {@code BigDecimal} will be the
     * number of digits in the fraction, or zero if the string
     * contains no decimal point, subject to adjustment for any
     * exponent; if the string contains an exponent, the exponent is
     * subtracted from the scale.  The value of the resulting scale
     * must lie between {@code Integer.MIN_VALUE} and
     * {@code Integer.MAX_VALUE}, inclusive.
     *
     * The character-to-digit mapping is provided by {@link
     * java.lang.Character#digit} set to convert to radix 10.  The
     * String may not contain any extraneous characters (whitespace,
     * for example).
     *
     * Examples:

     * The value of the returned {@code BigDecimal} is equal to
     * significand × 10 exponent.
     * For each string on the left, the resulting representation
     * [{@code BigInteger}, {@code scale}] is shown on the right.
     *      * "0"            [0,0]
     * "0.00"         [0,2]
     * "123"          [123,0]
     * "-123"         [-123,0]
     * "1.23E3"       [123,-1]
     * "1.23E+3"      [123,-1]
     * "12.3E+7"      [123,-6]
     * "12.0"         [120,1]
     * "12.3"         [123,1]
     * "0.00123"      [123,5]
     * "-1.23E-12"    [-123,14]
     * "1234.5E-4"    [12345,5]
     * "0E+7"         [0,-7]
     * "-0"           [0,0]
     * 
     *
     * Note: For values other than {@code float} and
     * {@code double} NaN and ±Infinity, this constructor is
     * compatible with the values returned by {@link Float#toString}
     * and {@link Double#toString}.  This is generally the preferred
     * way to convert a {@code float} or {@code double} into a
     * BigDecimal, as it doesn't suffer from the unpredictability of
     * the {@link #BigDecimal(double)} constructor.
     *
     * @param val String representation of {@code BigDecimal}.
     *
     * @throws NumberFormatException if {@code val} is not a valid
     *         representation of a {@code BigDecimal}.
     */
    public BigDecimal(String val) {
        this(val.toCharArray(), 0, val.length());
    }

人家都怕你不仔细看给了你那么多示例,还专门给了一个note

This is generally the preferred way to convert a {@code float} or {@code double} into a BigDecimal, as it doesn't suffer from the unpredictability of the {@link #BigDecimal(double)} constructor. 此构造函数是float或double转到BigDecimal的推荐方式,因为该构造方法不会像BigDecimal(double)一样会有一些不可预测的情况。

它最终调用了java.math.BigDecimal#BigDecimal(char[], int, int) 感兴趣大家可以自己去看。

我们再看另外一个构造函数

java.math.BigDecimal#BigDecimal(double)

代码语言:javascript
复制
 /**
     * Translates a {@code double} into a {@code BigDecimal} which
     * is the exact decimal representation of the {@code double}'s
     * binary floating-point value.  The scale of the returned
     * {@code BigDecimal} is the smallest value such that
     * (10scale × val) is an integer.
     * 
     * Notes:
     * 
     * 
     * The results of this constructor can be somewhat unpredictable.
     * One might assume that writing {@code new BigDecimal(0.1)} in
     * Java creates a {@code BigDecimal} which is exactly equal to
     * 0.1 (an unscaled value of 1, with a scale of 1), but it is
     * actually equal to
     * 0.1000000000000000055511151231257827021181583404541015625.
     * This is because 0.1 cannot be represented exactly as a
     * {@code double} (or, for that matter, as a binary fraction of
     * any finite length).  Thus, the value that is being passed
     * in to the constructor is not exactly equal to 0.1,
     * appearances notwithstanding.
     *
     * 
     * The {@code String} constructor, on the other hand, is
     * perfectly predictable: writing {@code new BigDecimal("0.1")}
     * creates a {@code BigDecimal} which is exactly equal to
     * 0.1, as one would expect.  Therefore, it is generally
     * recommended that the {@linkplain #BigDecimal(String)
     * String constructor} be used in preference to this one.
     *
     * 
     * When a {@code double} must be used as a source for a
     * {@code BigDecimal}, note that this constructor provides an
     * exact conversion; it does not give the same result as
     * converting the {@code double} to a {@code String} using the
     * {@link Double#toString(double)} method and then using the
     * {@link #BigDecimal(String)} constructor.  To get that result,
     * use the {@code static} {@link #valueOf(double)} method.
     * 
     *
     * @param val {@code double} value to be converted to
     *        {@code BigDecimal}.
     * @throws NumberFormatException if {@code val} is infinite or NaN.
     */
    public BigDecimal(double val) {
        this(val,MathContext.UNLIMITED);
    }

专门提到

new BigDecimal(0.1)的结果是0.1000000000000000055511151231257827021181583404541015625. This is because 0.1 cannot be represented exactly as a {@code double} (or, for that matter, as a binary fraction of any finite length). Thus, the value that is being passed in to the constructor is not exactly equal to 0.1, appearances notwithstanding. 这是因为double类型无法精确表示0.1。因此传入0.1参数到该构造方法其实并不精确等于0.1。 The {@code String} constructor, on the other hand, is perfectly predictable: writing {@code new BigDecimal("0.1")} creates a {@code BigDecimal} which is exactly equal to 0.1, as one would expect. Therefore, it is generally recommended that the {@linkplain #BigDecimal(String String constructor} be used in preference to this one. 更推荐使用参数为String的构造方法,换句话说用BigDecimal("0.1")来构造完全等于0.1的BigDecimal。 因此,推荐带String参数的构造方法。 When a {@code double} must be used as a source for a {@code BigDecimal}, note that this constructor provides an exact conversion; it does not give the same result asconverting the {@code double} to a {@code String} using the {@link Double#toString(double)} method and then using the {@link #BigDecimal(String)} constructor. 如果必须把double作为构造方法的参数时,注意和new BigDecimal(Double.toString(0.1d))的结果是完全不同的。

因此答案就不言而喻了。

四、其他

4.1 双精度问题

计算机通过二进制来存储数据,双精度8字节(64位)的表示

其中第63索引位,共1位,表示符号位(sign bit),用s表示;0表示正数,1表示负数

第52到62索引位,共11位,表示指数(signed exponent),用e表示;2的多少次方

第51到0索引位(significant/mantissa value),共52位,表示小数部分,用m表示;有效位

浮点型:https://docs.oracle.com/cd/E19957-01/806-3568/ncg_math.html

十进制无法表示三分之一,二进制无法表示十分之一。

像三分之一一样,三分之一无法用有限个十进制数表示。10的-1次幂(0.1)不是有限个2的幂的和,所以不能用有限个2进制位表示,而double是8字节的,只有64位,是有限个二进制数,因此无法精确表示0.1。

五、启发

正如前面的几个问题解答中我提到的几个常见方法一样,这类问题我们最好的办法是看源码!看源码的注释!!

看官方文档!!看权威规范!!(如本文提到的《IEEE Arithmetic》的网页)。

另外一个启发是计算机专业基础要扎实!!!二进制要理解的透彻一些。

开发的时候尽量多去源码里看注释!!!

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019/06/21 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、背景
  • 二、题目
  • 三、分析
    • 3.1 直接运行看效果
      • 3.2 源代码大法
      • 四、其他
        • 4.1 双精度问题
        • 五、启发
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档