前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Paxos理论介绍(2): Multi-Paxos与Leader

Paxos理论介绍(2): Multi-Paxos与Leader

作者头像
用户8964349
修改2021-09-01 18:04:06
4080
修改2021-09-01 18:04:06
举报
文章被收录于专栏:OpenIMOpenIM

前文:Paxos理论介绍(1): 朴素Paxos算法理论推导与证明 理解朴素Paxos是阅读本文的前提。

Multi-Paxos

朴素Paxos算法通过多轮的Prepare/Accept过程来确定一个值,我们称这整个过程为一个Instance。Multi-Paxos是通过Paxos算法来确定很多个值,而且这些值的顺序在各个节点完全一致。概括来讲就是确定一个全局顺序。

多个Instance怎么运作?首先我们先构建最简易的模式,各个Instance独立运作。

img
img

每个Instance独立运作一个朴素Paxos算法,我们保证仅当Instance i的值被确定后,方可进行i+1的Paxos算法,这样我们就保证了Instance的有序性。

但这样效率是比较差的,众所周知朴素Paxos算法的Latency很高,Multi-Paxos算法希望找到多个Instance的Paxos算法之间的联系,从而尝试在某些情况去掉Prepare步骤。

下面我尝试描述一个Sample的演进情况来阐述这个算法,因为这个算法的要点其实非常简单,而且无需更多证明。

首先我们定义Multi-Paxos的参与要素:

  • 3个参与节点 A/B/C.
  • Prepare(b) NodeA节点发起Prepare携带的编号。
  • Promise(b) NodeA节点承诺的编号。
  • Accept(b) NodeA节点发起Accept携带的编号。

1(A)的意思是A节点产生的编号1,2(B)代表编号2由B节点产生。绿色表示Accept通过,红色表示拒绝。

下图描述了A/B/C三个节点并行提交的演进过程:

img
img

这种情况下NodeA节点几乎每个Instance都收到其他节点发来的Prepare,导致Promise编号过大,迫使自己不断提升编号来Prepare。这种情况并未能找到任何的优化突破口。

下图描述了只有A节点提交的演进过程:

img
img

这种情况我们会立刻发现,在没有其他节点提交的干扰下,每次Prepare的编号都是一样的。于是乎我们想,为何不把Promised(b)变成全局的?来看下图:

img
img

假设我们在Instance i进行Prepare(b),我们要求对这个b进行Promise的生效范围是Instance[i, ∞),那么在i之后我们就无需在做任何Prepare了。可想而知,假设上图Instance 1之后都没有任何除NodeA之外其他节点的提交,我们就可以预期接下来Node A的Accept都是可以通过的。那么这个去Prepare状态什么时候打破?我们来看有其他节点进行提交的情况:

img
img

Instance 4出现了B的提交,使得Promised(b)变成了2(B), 从而导致Node A的Accept被拒绝。而NodeA如何继续提交?必须得提高自己的Prepare编号从而抢占Promised(b)。这里出现了很明显的去Prepare的窗口期Instance[1,3],而这种期间很明显的标志就是只有一个节点在提交。

重点:不Prepare直接Accept为啥是安全的?因为Accept的b已经被Promise过。

总结

Multi-Paxos通过改变Promised(b)的生效范围至全局的Instance,从而使得一些唯一节点的连续提交获得去Prepare的效果。

题外话:这里提一下我所观察到的Multi-Paxos的一个误区,很多人认为Multi-Paxos是由leader驱动去掉Prepare的,更有说在有Leader的情况下才能完成Multi-Paxos算法,这都是理解有误。大家看到这里也应该明白这里的因果关系,Multi-Paxos是适应某种请求特征情况下的优化,而不是要求请求满足这种特征。所以Multi-Paxos接受并行提交。

Leader

为何还要说Leader,虽然Multi-Paxos允许并行提交,但这种情况下效率是要退化到朴素Paxos的,所以我们并不希望长时间处于这种情况,Leader的作用是希望大部分时间都只有一个节点在提交,这样才能最大发挥Mulit-Paxos的优化效果。

怎么得到一个Leader,真的非常之简单,Lamport的论文甚至的不屑一提。我们观察Multi-Paxos算法,首先能做Accept(b)必然是b已经被Promised了,而连续的Accept(b)被打断,必然是由于Promised(b)被提升了,也就是出现了其他节点的提交(提交会先Prepare从而提升b)。那么重点来了,如何避免其他节点进行提交,我们只需要做一件事即可完成。

收到来自其他节点的Accept,则进行一段时间的拒绝提交请求。

这个解读起来就是各个节点都想着不要去打破这种连续的Accept状态,而当有一个节点在连续的Accept,那么其他节点必然持续不断的拒绝请求。这个Leader就这样无形的被产生出来了,我们压根没有刻意去“选举”,它就是来自于Multi-Paxos算法。

题外话:为何网上出现很多非常复杂的选举Leader算法,有的甚至利用Paxos算法去选举Leader,我觉的他们很有可能是没有完全理解Multi-Paxos,走入了必须有Leader这个误区。

用Paxos算法来进行选举是有意义的,但不应该用在Leader上面。Paxos的应用除了写之外,还有很重要的一环就是读,很多时候我们希望要读到Latest,通常的做法就是选举出一个Master。Master含义是在任一时刻只能有一个节点认为自己是Master,在这种约束下,读写我都在Master上进行,就可以获得Latest的效果。Master与Leader有本质上的区别,要达到Master这种强一致的唯一性,必须得通过强一致性算法才能选举出来。而当我们实现了Paxos算法后,选举Master也就变得非常简单了,会涉及到一些租约的东西,后面再分享。

说的再多不如阅读源码,猛击进入我们的开源Paxos类库实现:https://github.com/tencent-wechat/phxpaxos

OpenIMgithub开源地址:

https://github.com/OpenIMSDK/Open-IM-Server

OpenIM官网 :https://www.rentsoft.cn

OpenIM官方论坛:https://forum.rentsoft.cn/

更多技术文章:

开源OpenIM:高性能、可伸缩、易扩展的即时通讯架构 https://forum.rentsoft.cn/thread/3

【OpenIM原创】简单轻松入门 一文讲解WebRTC实现1对1音视频通信原理 https://forum.rentsoft.cn/thread/4

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文系转载前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Multi-Paxos
  • Leader
相关产品与服务
即时通信 IM
即时通信 IM(Instant Messaging)基于腾讯二十余年的 IM 技术积累,支持Android、iOS、Mac、Windows、Web、H5、小程序平台且跨终端互通,低代码 UI 组件助您30分钟集成单聊、群聊、关系链、消息漫游、群组管理、资料管理、直播弹幕和内容审核等能力。适用于直播互动、电商带货、客服咨询、社交沟通、在线课程、企业办公、互动游戏、医疗健康等场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档