前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Go高阶11,手摸手带你深入了解 Mutex 实现原理

Go高阶11,手摸手带你深入了解 Mutex 实现原理

作者头像
微客鸟窝
发布2021-09-10 15:39:45
1.5K0
发布2021-09-10 15:39:45
举报
文章被收录于专栏:Go语言指北Go语言指北

大家好我是无尘,今天我们再来深入了解下互斥锁

互斥锁是对于并发程序的共享资源进行访问控制的主要手段,之前在介绍并发的时候已经对互斥锁的使用进行过介绍:并发控制,同步原语 sync 包

Mutex 使用非常方便,但它的内部实现却复杂的很,今天我们来介绍下它的内部实现原理。

Mutex 数据结构

在源码包 src/sync/mutex.go:Mutex 定义了互斥锁的数据结构:

代码语言:javascript
复制
// A Mutex is a mutual exclusion lock.
// The zero value for a Mutex is an unlocked mutex.
//
// A Mutex must not be copied after first use.
type Mutex struct {
 state int32
 sema  uint32
}
  • state : 表示互斥锁的状态,例如是否被锁定
  • sema : 表示信号量,协程阻塞等待该信号量,解锁的协程释放信号量从而唤醒等待信号量的协程。

state 是32位的整型变量,内部实现是把它分成了四份,用来记录 Mutex 的四种状态。Mutex 的内部布局:

  • Waiter: 表示阻塞等待锁的协程个数,协程解锁时根据此值来判断是否需要释放信号量。
  • Starving:表示该 Mutex 是否处理饥饿状态, 0:没有饥饿 1:饥饿状态,说明有协程阻塞了超过1ms。
  • Woken: 表示是否有协程已被唤醒,0:没有协程唤醒 1:已有协程唤醒,正在加锁过程中。
  • Locked: 表示该 Mutex 是否已被锁定,0:没有锁定 1:已被锁定。

协程之间抢锁实际上是抢给 Locked 赋值的权利,能够给 Locked 域置 1,就说明抢锁成功。抢不到的话就阻塞等待 Mutex.sema 信号量,一旦持有锁的协程解锁,等待的协程会依次被唤醒。

Mutex方法

  • Lock() : 加锁方法
  • Unlock(): 解锁方法
  1. 互斥锁,使同一时刻只能有一个协程执行某段程序,其他协程等待该协程执行完再依次执行。
  2. 互斥锁只有两个方法 Lock (加锁)和 Unlock(解锁),当一个协程对资源上锁后,只有等该协程解锁,其他协程才能再次上锁。
  3. Lock 和 Unlock 是成对出现,为了防止上锁后忘记释放锁,我们可以使用 defer 语句来释放锁。

加/解锁过程

简单加锁

假设当前只有一个协程在加锁,且没有其他协程的干扰,其过程如下图:

加锁会查看 Locked 标志位是否为 0,若为 0 则改为 1,表示加锁成功。

加锁被阻塞

假设加锁时,锁已经被其他协程占用了,其过程如下图:

当 B 协程对一个已被占用的锁再次加锁时,Waiter 计数器增加了1,此时 B 协程将被阻塞,直到 Locked 值变为0后才会被唤醒。

简单解锁

假设解锁时,没有其他协程阻塞,其过程如下图:

由于没有其他协程阻塞等待加锁,所以此时解锁时只需要把 Locked 位改为 0 即可,不需要释放信号量。

解锁并唤醒协程

假设解锁时,有1个或多个协程阻塞,其过程如下图:

A协程解锁分为两个步,一是把 Locked 位置0,二是查看到 Waiter>0,所以释放一个信号量,唤醒一个阻塞的协程,被唤醒的B协程把 Locked 位改为 1,于是 B协程获得锁。

自旋过程

  • 加锁时,如果当前 Locked 位为 1,则说明该锁当前是由其他协程持有,尝试加锁的协程并不会马上转入阻塞,而是会持续的探测 Locked 位是否变为 0,这个过程即为自旋过程。
  • 自旋的时间很短,但如果在自旋过程中发现锁已被释放,那么协程可以立即获取锁。此时即便有协程被唤醒也无法获取锁,只能再次阻塞。
  • 自旋的好处是,当加锁失败时不必立即转入阻塞,有一定机会获取到锁,这样可以避免协程的切换。

自旋的条件

加锁时程序会自动判断是否可以自旋,但无限制的自旋会给 CPU 带来巨大的压力,所以判断是否可以自旋就很重要了。

自旋必须满足以下所有条件:

  • 自旋的次数要足够小,通常为4,即「自旋最多为4次」
  • CPU 核数要大于1,否则自旋是没有意义的,因为此时不可能有其他协程释放锁
  • 协程调度机制中的 Process 数量要大于 1,比如使用 GOMAXPROCS() 将处理器设置为 1 就不能启用自旋
  • 协程调度机制中的可运行队列必须为空,否则会延迟协程调度

自旋优势及问题

自旋的优势是更充分的利用CPU,尽量避免协程切换。

如果自旋过程中获得锁,那么之前被阻塞的协程将无法获得锁,如果加锁的协程特别多,每次都通过自旋获得锁,那么之前被阻塞的进程将很难获得锁,从而进入「饥饿状态」

为了避免协程长时间无法获取锁,自1.8版本以来增加了一个状态,即 Mutex 的 Starving 状态。这个状态下不会自旋,一旦有协程释放锁,那么一定会唤醒一个协程并成功加锁。

Mutex模式

每个 Mutex 都有两个模式,Normal 和 Starving。

  1. Normal

默认情况下,Mutex 的模式为 normal。在该模式下,协程如果加锁不成功不会立即转入阻塞排队,而是判断是否满足自旋的条件,如果满足则会启动自旋过程,尝试抢锁。

  1. starvation

自旋过程中能抢到锁,一定意味着同一时刻有协程释放了锁,释放锁时如果发现有阻塞等待的协程,还会释放一个信号量来唤醒一个等待协程,被唤醒的协程得到 CPU 后开始运行,此时发现锁已被抢占了,自己只好再次阻塞,不过阻塞前会判断自上次阻塞到本次阻塞经过了多长时间,如果超过 1ms 的话,会将 Mutex 标记为”饥饿”模式,然后 再阻塞。 处于饥饿模式下,不会启动自旋过程,也即一旦有协程释放了锁,那么一定会唤醒协程,被唤醒的协程将会成功获取锁,同时也会把等待计数减 1。

Woken 状态

Woken 状态用于加锁和解锁过程的通信,例如,同一时刻,两个协程一个在加锁,一个在解锁,在加锁的协程可能在自旋过程中,此时把 Woken 标记为 1,用于通知解锁协程不必释放信号量了。

重复解会 panic

Unlock 过程分为将 Locked 改为 0,然后判断 Waiter 的值:

  • 如果值 >0,则释放信号量。
  • 如果多次 Unlock(),那么可能每次都释放一个信号量,这样会唤醒多个协程,多个协程唤醒后会继续在 Lock()的逻辑里抢锁,势必会增加 Lock()实现的复杂度,也会引起不必要的协程切换。
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-08-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 微客鸟窝 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Mutex 数据结构
    • Mutex方法
    • 加/解锁过程
      • 简单加锁
        • 加锁被阻塞
          • 简单解锁
            • 解锁并唤醒协程
            • 自旋过程
              • 自旋的条件
                • 自旋优势及问题
                • Mutex模式
                • Woken 状态
                • 重复解会 panic
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档