前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >MATLAB非线性可视化之线性系统相图

MATLAB非线性可视化之线性系统相图

作者头像
巴山学长
发布2021-09-18 15:17:48
1.5K0
发布2021-09-18 15:17:48
举报
文章被收录于专栏:巴山学长巴山学长

我们在前面的多摆模型中,利用多摆的微分方程模型,求解出了多摆每时每刻的位置随时间的变化。当然那是一个高度复杂的非线性模型,难以上手分析。

这篇文章,我们首先利用一个二阶的线性模型进行求解,并引入微分方程定性分析中常用的工具——相图。

首先考虑下面这个经典的二阶阻尼振动方程:

将它整理为线性系统,如dx=Ax形式的样子:

矩阵A是一个二阶矩阵。我们取k=0.925,c=0.3。则矩阵A的特征根可以求得为:λ1=-0.15+0.95i,λ2=-0.15-0.95i。特征值的实部都是负数,代表系统收敛。特征值的虚部不为零,存在震荡现象。

我们取三组不同的位置和速度,作为初始状态点进行计算,可以得到下面的时间-位移曲线:

从时域曲线上看,这些曲线之间似乎没有什么关系。

但是如果我们绘制出 位移-速度 图,可以得到:

三条曲线以一种相同的方式逐渐向内汇集。我们把这种曲线叫做轨迹。这些轨迹如同在流场中的水流一般,在一个场空间内运动。我们把这个二维场叫做相空间。这个场每一个点的向量为[dx,ddx]。这个向量场组成的相空间,能够完全的描述出整个系统,沿着向量场的箭头逐步连线,便可以预测出任意一点未来的运动状态。把这个向量场绘制出来,如下图:

我们把这种螺旋点叫做稳定的焦点,特点是特征根的实根为负数,虚部不为零。这种相空间在时域上,对应着震荡收敛的解。

同理,当两个特征根都为正,虚部不为零时,则会出现发散的螺旋点,称为不稳定的焦点。

当特征根不存在虚部,也对应着4种情况:特征根同号,特征根异号,特征根一个为0,特征根两个为0。

特征根同号的话,还是以前面的阻尼举例子。继续增大阻尼,使得系统达到过阻尼状态。我们取k=0.96,c=2,此时特征根等于λ1=-0.8,λ2=-1.2。这种稳定点叫做稳定的结点。同样取三个不同的初始值,计算出相轨迹,与计算得到的相空间叠加,如下图:

如果把前面单自由度震荡系统中的弹簧去掉,变成只有阻尼c的滑块。此时取k=0,c=2,此时特征根为-2和0。代表只有一个吸引分量,另一个维度保持既不吸引也不排斥的状态。这时候表现为滑块速度逐渐降低,最终停到哪里算哪里,整个dx=0这根线都是它的稳定位置。

同样,如果不要阻尼项,只有弹簧,则变成了永远震荡下去的弹簧振子。此时取k=1,c=0,特征根为-1i和1i两个虚数。代表只有震荡分量,没有吸引或排斥分量。此时系统为一个标准的正圆。各个轨线在各自的圆上不停的运动互不影响。

还剩一个特征根是一正一负的,用弹簧振子举例不是直观,所以就不拿弹簧说事了。此时的中心点叫做鞍点,由于特征根的特性,导致了一部分吸引一部分排斥的特点。很多常见的不稳定平衡点,比如单摆的180°最高点。表现为“你以为我要在这里停下,其实我只是路过”。

绘制二维线性系统的相平面代码如下:

代码语言:javascript
复制
clear
clc
close all
%线性系统,用来展示相空间的用途

%小阻尼震荡(负实,共轭虚部)
A=[0,1;
    -0.925,-0.3];
%大阻尼震荡(负实,无虚部)
% A=[0,1;
%     -0.96,-2];
%只有阻尼(一个为0一个为负)
% A=[0,1;
%     0,-2];
%只有弹簧(实部都为0)
% A=[0,1;
%     -1,0];
%鞍点
% A=[0.15,0;
%     0,-0.15];

[y,dy,u,v]=PhaseSpace_Linear(-5:0.05:5,-4:0.05:4,A);

h=1e-2;
x0=0:h:20;
N=length(x0);
%相同的微分方程,不同的初始状态
[y1,~]=ODE_RK4_hyh(x0,h,[4;-2],A);
[y2,~]=ODE_RK4_hyh(x0,h,[0;-4],A);
[y3,~]=ODE_RK4_hyh(x0,h,[-3;3],A);



figure()
hold on
plot(x0,y1(1,:),'color',[1,0,0])
plot(x0,y2(1,:),'color',[0,1,0])
plot(x0,y3(1,:),'color',[0,0,1])
%绘制箭头
xy_lim=axis;
xy_ratio=get(gca, 'DataAspectRatio');xy_ratio=xy_ratio(1:2);
N_Arrow=5;
for k=1:N_Arrow
    N_k=round(N/N_Arrow*(k-0.83));
    plot_arrow( xy_lim,xy_ratio,[x0(N_k),y1(1,N_k)]...
        ,[1,0,0],1, [x0(N_k)-x0(N_k-10),y1(1,N_k)-y1(1,N_k-10)] )
   plot_arrow( xy_lim,xy_ratio,[x0(N_k),y2(1,N_k)]...
        ,[0,1,0],1, [x0(N_k)-x0(N_k-10),y2(1,N_k)-y2(1,N_k-10)] )
    plot_arrow( xy_lim,xy_ratio,[x0(N_k),y3(1,N_k)]...
        ,[0,0,1],1, [x0(N_k)-x0(N_k-10),y3(1,N_k)-y3(1,N_k-10)] )
end
hold off
legend("条件1","条件2","条件3")
box on
xlabel('t');ylabel('x');


figure()
hold on
plot(y1(1,:),y1(2,:),'color',[0.8,0,0],'linewidth',1)
plot(y2(1,:),y2(2,:),'color',[0,0.8,0],'linewidth',1)
plot(y3(1,:),y3(2,:),'color',[0,0,0.8],'linewidth',1)
xlim([-5,5]);ylim([-4,4])
%绘制箭头
xy_lim=axis;
xy_ratio=get(gca, 'DataAspectRatio');xy_ratio=xy_ratio(1:2);
N_Arrow=3;
for k=1:N_Arrow
    N_k=round(N/N_Arrow*(k-0.9));
    plot_arrow( xy_lim,xy_ratio,[y1(1,N_k),y1(2,N_k)]...
        ,[0.8,0,0],2, [y1(1,N_k)-y1(1,N_k-10),y1(2,N_k)-y1(2,N_k-10)] )
    plot_arrow( xy_lim,xy_ratio,[y2(1,N_k),y2(2,N_k)]...
        ,[0,0.8,0],2, [y2(1,N_k)-y2(1,N_k-10),y2(2,N_k)-y2(2,N_k-10)] )
    plot_arrow( xy_lim,xy_ratio,[y3(1,N_k),y3(2,N_k)]...
        ,[0,0,0.8],2, [y3(1,N_k)-y3(1,N_k-10),y3(2,N_k)-y3(2,N_k-10)] )
end
hold off
xlim([-5,5]);ylim([-4,4])
box on
xlabel('x');ylabel('dx');

% figure()
hold on
h=streamslice(y,dy,u,v);
xlim([-5,5]);ylim([-4,4])
box on
xlabel('x');ylabel('dx');



function [F,Output]=Fdydx(x,y,Input)
%形式为Y'=F(x,Y)的方程,参见数值分析求解常系数微分方程相关知识
%高次用列向量表示,F=[dy(1);dy(2)];y(1)为函数,y(2)为函数导数
A=Input;
F=A*y;
Output=[];
end

function [y,dy,u,v]=PhaseSpace_Linear(y1,y2,A)
[y,dy]=meshgrid(y1,y2);%初始化网格
u=zeros(size(y));v=u;
for k=1:numel(y)
    %计算网格上每一个点的上的方向
    F=Fdydx(0,[y(k);dy(k)],A);
    u(k)=F(1);
    v(k)=F(2);
end
end


function [y,Output]=ODE_RK4_hyh(x,h,y0,Input)
%4阶RK方法
%h间隔为常数的算法
y=zeros(size(y0,1),size(x,2));
y(:,1)=y0;
for ii=1:length(x)-1
    yn=y(:,ii);
    xn=x(ii);
    [K1,~]=Fdydx(xn    ,yn       ,Input);
    [K2,~]=Fdydx(xn+h/2,yn+h/2*K1,Input);
    [K3,~]=Fdydx(xn+h/2,yn+h/2*K2,Input);
    [K4,~]=Fdydx(xn+h  ,yn+h*K3  ,Input);
    y(:,ii+1)=yn+h/6*(K1+2*K2+2*K3+K4);
end
Output=[];
end

function plot_arrow(xy_lim,xy_ratio,xy_arrow,arrow_color,arrow_width,arrow_direction)
%初始化箭头形状(归一化的形状)
arrow_0=[0,0;-1,0.5;-1,-0.5];
%对方向进行归一化
a_dn=arrow_direction(:)./xy_ratio(:);
a_dn=a_dn/sqrt(sum(a_dn.^2));
d=(xy_lim(4)-xy_lim(3)+xy_lim(2)-xy_lim(1))/2;
%箭头对窗口缩放
arrow_1=arrow_0*arrow_width*0.03*d;
%箭头旋转
arrow_2=arrow_1*[a_dn(1),a_dn(2);-a_dn(2),a_dn(1)];
%箭头变形
xy_ratio_n=xy_ratio/sqrt(sum(xy_ratio.^2));%对比例尺归一化
arrow_3=arrow_2.*xy_ratio_n+xy_arrow;
fill(arrow_3(:,1),arrow_3(:,2),arrow_color,'EdgeColor','none')
end

参考资料:

[1]Morris W. Hirsch. 微分方程、动力系统与混沌导论[M]. 人民邮电出版社, 2008.

[2]刘秉正. 非线性动力学与混沌基础[M]. 东北师范大学出版社, 1994.

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-08-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 巴山学长 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档