前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >SM2 (含SM3、SM4)国密算法工具QT版,彻底搞懂国密算法的使用

SM2 (含SM3、SM4)国密算法工具QT版,彻底搞懂国密算法的使用

作者头像
杨永贞
发布2021-10-09 11:25:23
4.7K4
发布2021-10-09 11:25:23
举报
文章被收录于专栏:独行猫a的沉淀积累总结

网上有很多网友问国密算法SM2怎么使用?什么是压缩公钥和非压缩公钥?xB和yB这参数是什么?怎么使用SM2做加解密?如何签名和验签?有没有工具来验证下?

这里分享个自己用QT造的一个小工具,简单好用,同时也增加支持了SM3、SM4国密算法。且有详细的过程日志,可以保存为文件。用来对SM2国密算法做加解密和签名,验签,秘钥生成再合适不过了。

需要工具的和使用上的疑问的都可以在留言区留言和评论,工具免费提供。也可以在个人的csdn资源中下载。

加密,解密验证:

其中xB为公钥,如果是压缩公钥,这里填33字节的16进制的压缩公钥,yB不用填,会自动计算得到。如果是非压缩公钥,则xB和yB都需要输入,分别填非压缩公钥的前32字节和后32字节。

其实说白点儿xB和yB合起来才是一串完整的非压缩公钥,只是把公钥分成了两段罢了。

况且,如果是压缩公钥,只需要32字节的xB就够了。哦不,前面的02或03可不能少,要不没法求得yB这后半段公钥。至于为啥公钥要搞成x,y两段,是因为公钥是椭圆曲线上的一个点,一个点包含(x,y)两个分量,这才确定了一个坐标。

为啥给定了x就能求得y,给定y能否求得x呢?当然了,根据椭圆曲线方程:y^2=x^3+ax+b,

a,b都是常数是已知的,给了x就能得到y,给定y就能得到x。有时候压缩公钥别人会给02开头的,有时候会给03开头的。看到这个公式知道了吧,02开头的相当于给你了x,03开头的相当于给你了y.

不压缩的公钥相当于直接给你了(x,y)一个完整坐标。

再说下那个随机数,它是固定长度的32个字节。这随机数也是为了安全。在加密时有用,解密时用不到。这个工具中,加密时之所以随时数为非必填,代码里给你指定了固定的一个值。当然,你可以输入和改变这个随机数。而且,随时数不同,加密后的内容是不同的。但是,解密时,只要私钥pB正确,都能正确的解密出明文,这厉害吧。

日志窗口中可以看到详细的加密,解密日志。

签名验证:

其中,xB位置输入sm2的压缩公钥,长度为33字节。最前面的02或03代表压缩的参数。明文处输入消息内容,签名的输入框输入待验证的签名信息(签名信息是定长,为64个字节)。点击验签按钮。最后看到日志窗口提示 verify success则是验签成功。

签名和验签的算法过程:

签名过程: 以签名者A为例,计算 ZA=H256(ENTLA ∥ IDA ∥ a ∥ b ∥ xG ∥ yG ∥ xA ∥ yA),其中ENTLA是IDA的比特长度转换而成的两个字节; M' = ZA || M,其中M为待签名消息; e = H256(M'); 用随机数发生器产生随机数k ∈[1,n-1]; 计算椭圆曲线点(x1,y1)=[k]G; 计算r=(e + x1) mod n,若r=0或r+k=n则返回step 4; 计算s = ((k − r * dA) / (1 + dA)) mod n,若s=0则返回step 4; 输出签名(r,s); 验签过程: ZA=H256(ENTLA ∥ IDA ∥ a ∥ b ∥ xG ∥ yG ∥ xA ∥ yA) M′ =ZA ∥ M; e = H256(M'); 计算t = (r ′ + s ′ ) mod n, 若t = 0,则验证不通过; 计算椭圆曲线点(x1 , y1 ) = [s']G + [t]PA; 计算R = (e + x1 ) mod n,检验R = r是否成立,若成立则验证通过;否则验证不通过; 后续打算用详细代码来展示这一过程。

上述过程中的那么多字母,如果不明白含义容易看晕。

ENTLA ∥ IDA ∥ a ∥ b ∥ xG ∥ yG ∥ xA ∥ yA拿这串来举例:

ENTLA是长度,占两字节,它可能是个变长。

IDA是,用户ID数据。国密sm2使用的是固定的值"1234567812345678"。

a,b,xG和yG是椭圆曲线算法选定的椭圆曲线参数。后面有说明。这几个都是个固定值。

xA和yA这个就是公钥的前后两段。

代码展示ZA=H256(ENTLA ∥ IDA ∥ a ∥ b ∥ xG ∥ yG ∥ xA ∥ yA)这个过程:

代码语言:javascript
复制
    userid_bitlen = userid_len << 3;
    buf[0] = (userid_bitlen >> 8) & 0xFF;
    buf[1] = userid_bitlen & 0xFF;

    // ENTLA|| IDA|| a|| b|| Gx || Gy || xA|| yA

    memcpy(buf+2, userid, userid_len);
    memcpy(buf+2+userid_len, sm2_par_dig, 128);

    memset(buf+2+userid_len+128, 0, 64);
    memcpy(buf+2+userid_len+128+32-xa_len, xa, 32);
    memcpy(buf+2+userid_len+128+32+32-ya_len, ya, 32);

    sm3(buf, 2+userid_len+128+32+32, e);

密钥对的生成:

选取合适的椭圆曲线参数{p,a,b,Gx,Gy,n};

用随机数发生器产生整数d ∈ [1,n−2];

计算点P = (xP,yP) = [d]G;

如果P是无穷远点O,goto step 2;

输出密钥对(d,P),其中d为私钥,P为公钥。

代码过程:

代码语言:javascript
复制
    ......  
    cinstr(p,cfig->p);
	cinstr(a,cfig->a);
    cinstr(b,cfig->b);
	cinstr(n,cfig->n);
	cinstr(x,cfig->x);
    cinstr(y,cfig->y);
	ecurve_init(a,b,p,MR_PROJECTIVE);
    g = epoint_init();
    epoint_set(x,y,0,g); 
    irand(time(NULL));
    bigrand(n,key1);   私钥db
    ecurve_mult(key1,g,g); //计算Pb
    epoint_get(g,x,y);
    *wxlen = big_to_bytes(32, x, (char *)wx, TRUE);
   	*wylen = big_to_bytes(32, y, (char *)wy, TRUE);
	*privkeylen = big_to_bytes(32, key1, (char *)privkey, TRUE);
    ......

p,a,b,Gx,Gy,n为椭圆曲线参数,国密sm2使用的是以下的值的参数。

p是一个大的质数。a,b是方程中的两个常量。Gx,Gy为基点的x,y坐标。n 是基点G的可倍积阶数。

给定n和P,我们运算Q=nP至少需要一个多项式时间。但是如果反过来呢?如果我们知道Q和P,要反过来得到n呢?该问题被认为是对数问题。感兴趣的可以查下什么是对数问题。

查阅《GMT 0003-2012》这份标准文档,有SM2算法的设计背景知识供解读。

使用素数域256位椭圆曲线 曲线方程:y^2=x^3+ax+b 曲线参数 p = FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF a = FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC b = 28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93 n = FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF409 39D54123 Gx = 32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589 334C74C7 Gy = BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0

需要进一步的了解椭圆曲线算法,可先了解下ECC模型。

ECC模型 ECC椭圆曲线由很多点组成,这些点由特定的方程式组成的,比如方程式可以是y^2 = x^3 + ax + b,这些点连接起来就是一条曲线,但曲线并不是一个椭圆。

椭圆曲线有个特点,任意两个点能够得到这条椭圆曲线上的另外一点,这个操作称为打点,经过多次(比如d次)打点后,能够生成一个最终点(F)。

在上面的图中,A点称为基点(G)或者生成器。A可以和自己打点从而生成B点,在实际应用的时候,一般有基点就可以了。经过多次打点,就得到了最终点G。

ECC密码学的关键点就在于就算知道具体方程式、基点(G)、最终点(F),也无法知晓一共打点了多少次(d)。

ECC中,打点次数(d)就是私钥,这通常是一个随机数,公钥就是最终点(F),包含(x,y)两个分量,通常组合成一个数字来传输和存储。

ECC由方程式(比如a、b这样的方程式参数)、基点(G)、质数(P)组成。理论上方程式和各种参数组合可以是任意的,但是在密码学中,为了安全,系统预先定义了一系列的曲线,称为命名曲线(name curve),比如secp256k1就是一个命名曲线。对于开发者而言,在使用ECC密码学的时候,就是选择具体的命名曲线。

SM2算法是ECC算法的一种,相当于是设计了一条ECC命名曲线。

为什么要大力推广国密算法,当然是因为安全了。以下这段摘自网上:

摘自:https://www.cnblogs.com/gzhlt/p/10270913.html

椭圆曲线算法安全性,现状,运用

目前椭圆曲线应用的范围越来越广,在BTC,ETH,EOS,莱特币,DASH等都有使用。密码学中把正向计算是很容易的,但若要有效的执行反向则很困难的算法叫做陷门函数。在RSA的章节中已经介绍过,RSA会随着因式分解的数字变大而变得越有效率,对于私钥增长的需求决定了RSA并不能算作一个完美的陷门函数。事实证明在椭圆曲线中如果你有两个点,一个最初的点乘以K次到达最终点,在你只知道最终点时找到n和最初点是很难的,这就是一个非常棒的trapdoor函数的基础,最近三十年的研究,数学家还没有找到一个方法证实。密码学家Lenstra引进了“全球安全(Global Security)”的概念:假设破解一个228字节的RSA秘钥需要的能量少于煮沸一勺水的能量。那么破解一个228字节的椭圆曲线秘钥需要煮沸地球上所有水的能量。如果RSA要达到一个同样的安全水平,你需要一个2,380字节的秘钥。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021/09/27 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 椭圆曲线算法安全性,现状,运用
相关产品与服务
文件存储
文件存储(Cloud File Storage,CFS)为您提供安全可靠、可扩展的共享文件存储服务。文件存储可与腾讯云服务器、容器服务、批量计算等服务搭配使用,为多个计算节点提供容量和性能可弹性扩展的高性能共享存储。腾讯云文件存储的管理界面简单、易使用,可实现对现有应用的无缝集成;按实际用量付费,为您节约成本,简化 IT 运维工作。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档