首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >你踩过几种C++内存泄露的坑?

你踩过几种C++内存泄露的坑?

作者头像
C语言与CPP编程
发布2021-10-20 13:39:05
1.3K0
发布2021-10-20 13:39:05
举报
文章被收录于专栏:c语言与cpp编程c语言与cpp编程

Modern C++之前,C++无疑是个更容易写出坑的语言,无论从开发效率,和易坑性,让很多新手望而却步。比如内存泄露问题,就是经常会被写出来的坑,本文就让我们一起来看看,这些让现在或者曾经的C++程序员泪流满面的内存泄露场景吧。你是否有踩过?

1. 函数内或者类成员内存未释放

这类问题可以称之为out of scope的时候,并没有释放相应对象的堆上内存。有时候最简单的场景,反而是最容易犯错的。这个我想主要是因为经常写,哪有不出错。

下面场景一看就知道了,当你在写XXX_Class * pObj = new XXX_Class();这一行的时候,脑子里面还在默念记得要释放pObj ,记得要释放pObj, 可能因为重要的事情要说三遍,而你只喊了两遍,最终还是忘记了写delete pObj; 这样去释放对象。

void MemoryLeakFunction()
{
  XXX_Class * pObj = new XXX_Class();
  pObj->DoSomething();
  return; 
}

下面这个场景,就是析构函数中并没有释放成员所指向的内存。这个我们就要注意了,一般当你构建一个类的时候,写析构函数一定要切记释放类成员关联的资源。

class MemoryLeakClass
{
public:
  MemoryLeakClass() 
  { 
    m_pObj = new XXX_ResourceClass;
  }
  void DoSomething()
  {
    m_pObj->DoSomething();
  }
  ~MemoryLeakClass()
  {
    ;
  }
private:
  XXX_ResourceClass* m_pObj;
};

上述这两种代码例子,是不是让一个C++工程师如履薄冰,完全看自己的大脑在不在状态。

boost或者C++ 11后,通过智能指针去进行包裹这个原始指针,这是一种RAII的思想(可以参阅本文末尾的关联阅读), 在out of scope的时候,释放自己所包裹的原始指针指向的资源。将上述例子用unique_ptr改写一下。

void MemoryLeakFunction()
{
  std::unique_ptr<XXX_Class> pObj = make_unique<XXX_Class>();
  pObj->DoSomething();
  return; 
}

2. delete []

大家知道C++中这样一个语句XXX_Class * pObj = new XXX_Class(); 中的new我们一般称其为C++关键字 (keyword), 就以这个语句为例做了两个操作:

  1. 调用了operator new从堆上申请所需的空间
  2. 调用XXX_Class的构造函数

那么当你调用delete pObj;的时候,道理同new,刚好相反:

  1. 调用了XXX_Class的析构函数
  2. 通过operator delete 释放了内存

一切似乎都没有什么问题,然后又一个坑来了。但如果申请的是一个数组呢,入下述例子:

class MemoryLeakClass
{
public:
  MemoryLeakClass() 
  { 
    m_pStr = new char[100];
  }
  void DoSomething()
{
    strcpy_s(m_pStr, 100, "Hello Memory Leak!");
    std::cout << m_pStr << std::endl;
  }
  ~MemoryLeakClass()
  {
    delete m_pStr;
  }
private:
  char *m_pStr;
};

void MemoryLeakFunction()
{
  const int iSize = 5;
  MemoryLeakClass* pArrayObjs = new MemoryLeakClass [iSize];
  for (int i = 0; i < iSize; i++)
  {
    (pArrayObjs+i)->DoSomething();
  }
  delete pArrayObjs;
}

上述例子通过MemoryLeakClass* pArrayObjs = new MemoryLeakClass [iSize];申请了一个MemoryLeakClass数组,那么调用不匹配的delete pArrayObjs;, 会产生内存泄露。先看看下图, 然后结合刚讲的delete的行为:

那么其实调用delete pArrayObjs;的时候,释放了整个pArrayObjs的内存,但是只调用了pArrayObjs[0]析构函数并释放中的m_pStr指向的内存。pArrayObjs 1~4并没有调用析构函数,从而导致其中的m_pStr指向的内存没有释放。所以我们要注意newdelete要匹配使用,当使用的new []申请的内存最好要用delete[]

那么留一个问题给读者, 上面代码delete m_pStr;会导致同样的问题吗?

如果总是要让我们自己去保证,newdelete的配对,显然还是难以避免错误的发生的。这个时候也可以使用unique_ptr, 修改如下:

void MemoryLeakFunction()
{
  const int iSize = 5;
  std::unique_ptr<MemoryLeakClass[]> pArrayObjs = std::make_unique<MemoryLeakClass[]>(iSize);
  for (int i = 0; i < iSize; i++)
  {
    (pArrayObjs.get()+i)->DoSomething();
  }
}

3. delete (void*)

如果上一个章节已经有理解,那么对于这个例子,就很容易明白了。正因为C++的灵活性,有时候会将一个对象指针转换为void *,隐藏其类型。这种情况SDK比较常用,实际上返回的并不是SDK用的实际类型,而是一个没有类型的地址,当然有时候我们会为其亲切的取一个名字,比如叫做XXX_HANDLE

那么继续用上述为例MemoryLeakClass, SDK假设提供了下面三个接口:

  1. InitObj创建一个对象,并且返回一个PROGRAMER_HANDLE(即void *),对应用程序屏蔽其实际类型
  2. DoSomething 提供了一个功能去做一些事情,输入的参数,即为通过InitObj申请的对象
  3. 应用程序使用完毕后,一般需要释放SDK申请的对象,提供了FreeObj
typedef void * PROGRAMER_HANDLE;

PROGRAMER_HANDLE InitObj()
{
  MemoryLeakClass* pObj = new MemoryLeakClass();
  return (PROGRAMER_HANDLE)pObj;
}

void DoSomething(PROGRAMER_HANDLE pHandle)
{
  ((MemoryLeakClass*)pHandle)->DoSomething();
}

void FreeObj(void *pObj)
{
  delete pObj;
}

看到这里,也许有读者已经发现问题所在了。上述代码在调用FreeObj的时候,delete看到的是一个void *, 只会释放对象所占用的内存,但是并不会调用对象的析构函数,那么对象内部的m_pStr所指向的内存并没有被释放,从而会导致内存泄露。修改也是自然比较简单的:

void FreeObj(void *pObj)
{
  delete ((MemoryLeakClass*)pObj);
}

那么一般来说,最好由相对资深的程序员去进行SDK的开发,无论从设计和实现上面,都尽量避免了各种让人泪流满满的坑。

4. Virtual destructor

现在大家来看看这个很容易犯错的场景, 一个很常用的多态场景。那么在调用delete pObj;会出现内存泄露吗?

class Father
{
public:
  virtual void DoSomething()
{
    std::cout << "Father DoSomething()" << std::endl;
  }
};

class Child : public Father
{
public:
  Child()
  {
    std::cout << "Child()" << std::endl;
    m_pStr = new char[100];
  }

  ~Child()
  {
    std::cout << "~Child()" << std::endl;
    delete[] m_pStr;
  }

  void DoSomething()
{
    std::cout << "Child DoSomething()" << std::endl;
  }
protected:
  char* m_pStr;
};

void MemoryLeakVirualDestructor()
{
  Father * pObj = new Child;
  pObj->DoSomething();
  delete pObj;
}

会的,因为Father没有设置Virtual 析构函数,那么在调用delete pObj;的时候会直接调用Father的析构函数,而不会调用Child的析构函数,这就导致了Child中的m_pStr所指向的内存,并没有被释放,从而导致了内存泄露。

并不是绝对,当有这种使用场景的时候,最好是设置基类的析构函数为虚析构函数。修改如下:

class Father
{
public:
  virtual void DoSomething()
{
    std::cout << "Father DoSomething()" << std::endl;
  }
  virtual ~Father() { ; }
};

class Child : public Father
{
public:
  Child()
  {
    std::cout << "Child()" << std::endl;
    m_pStr = new char[100];
  }

  virtual ~Child()
  {
    std::cout << "~Child()" << std::endl;
    delete[] m_pStr;
  }

  void DoSomething()
{
    std::cout << "Child DoSomething()" << std::endl;
  }
protected:
  char* m_pStr;
};

5. 对象循环引用

看下面例子,既然为了防止内存泄露,于是使用了智能指针shared_ptr;并且这个例子就是创建了一个双向链表,为了简单演示,只有两个节点作为演示,创建了链表后,对链表进行遍历。 那么这个例子会导致内存泄露吗?

struct Node
{
  Node(int iVal)
  {
    m_iVal = iVal;
  }
  ~Node()
  {
    std::cout << "~Node(): " << "Node Value: " << m_iVal << std::endl;
  }
  void PrintNode()
{
    std::cout << "Node Value: " << m_iVal << std::endl;
  }

  std::shared_ptr<Node> m_pPreNode;
  std::shared_ptr<Node> m_pNextNode;
  int m_iVal;
};

void MemoryLeakLoopReference()
{
  std::shared_ptr<Node> pFirstNode = std::make_shared<Node>(100);
  std::shared_ptr<Node> pSecondNode = std::make_shared<Node>(200);
  pFirstNode->m_pNextNode = pSecondNode;
  pSecondNode->m_pPreNode = pFirstNode;

  //Iterate nodes
  auto pNode = pFirstNode;
  while (pNode)
  {
    pNode->PrintNode();
    pNode = pNode->m_pNextNode;
  }
}

先来看看下图,是链表创建完成后的示意图。有点晕乎了,怎么一个双向链表画的这么复杂,黄色背景的均为智能指针或者智能指针的组成部分。其实根据双向链表的简单性和下图的复杂性,可以想到,智能指针的引入虽然提高了安全性,但是损失的是性能。所以往往安全性和性能是需要互相权衡的。 我们继续往下看,哪里内存泄露了呢?

如果函数退出,那么m_pFirstNodem_pNextNode作为栈上局部变量,智能指针本身调用自己的析构函数,给引用的对象引用计数减去1(shared_ptr本质采用引用计数,当引用计数为0的时候,才会删除对象)。此时如下图所示,可以看到智能指针的引用计数仍然为1, 这也就导致了这两个节点的实际内存,并没有被释放掉, 从而导致内存泄露。

你可以在函数返回前手动调用pFirstNode->m_pNextNode.reset();强制让引用计数减去1, 打破这个循环引用。 还是之前那句话,如果通过手动去控制难免会出现遗漏的情况, C++提供了weak_ptr

struct Node
{
  Node(int iVal)
  {
    m_iVal = iVal;
  }
  ~Node()
  {
    std::cout << "~Node(): " << "Node Value: " << m_iVal << std::endl;
  }
  void PrintNode()
{
    std::cout << "Node Value: " << m_iVal << std::endl;
  }

  std::shared_ptr<Node> m_pPreNode;
  std::weak_ptr<Node>    m_pNextNode;
  int m_iVal;
};

void MemoryLeakLoopRefference()
{
  std::shared_ptr<Node> pFirstNode = std::make_shared<Node>(100);
  std::shared_ptr<Node> pSecondNode = std::make_shared<Node>(200);
  pFirstNode->m_pNextNode = pSecondNode;
  pSecondNode->m_pPreNode = pFirstNode;

  //Iterate nodes
  auto pNode = pFirstNode;
  while (pNode)
  {
    pNode->PrintNode();    
    pNode = pNode->m_pNextNode.lock();
  }
}

看看使用了weak_ptr之后的链表结构如下图所示,weak_ptr只是对管理的对象做了一个弱引用,其并不会实际支配对象的释放与否,对象在引用计数为0的时候就进行了释放,而无需关心weak_ptrweak计数。注意shared_ptr本身也会对weak计数加1. 那么在函数退出后,当pSecondNode调用析构函数的时候,对象的引用计数减一,引用计数为0,释放第二个Node,在释放第二个Node的过程中又调用了m_pPreNode的析构函数,第一个Node对象的引用计数减1,再加上pFirstNode析构函数对第一个Node对象的引用计数也减去1,那么第一个Node对象的引用计数也为0,第一个Node对象也进行了释放。

如果将上述代码改为双向循环链表,去除那个循环遍历Node的代码,那么最后Node的内存会被释放吗?这个问题留给读者。

6. 资源泄露

如果说些作文的话,这一章节,可能有点偏题了。本章要讲的是广义上的资源泄露,比如句柄或者fd泄露。这些也算是内存泄露的一点点扩展,写作文的一点点延伸吧。 看看下述例子, 其在操作完文件后,忘记调用CloseHandle(hFile);了,从而导致内存泄露。

void MemroyLeakFileHandle()
{
  HANDLE hFile = CreateFile(LR"(C:\test\doc.txt)", 
    GENERIC_READ,
    FILE_SHARE_READ,
    NULL, 
    OPEN_EXISTING, 
    FILE_ATTRIBUTE_NORMAL,
    NULL);

  if (INVALID_HANDLE_VALUE == hFile)
  {
    std::cerr << "Open File error!" << std::endl;
    return;
  }

  const int BUFFER_SIZE = 100;
  char pDataBuffer[BUFFER_SIZE];
  DWORD dwBufferSize;
  if (ReadFile(hFile,
      pDataBuffer,
      BUFFER_SIZE,
      &dwBufferSize,
      NULL))
  {
    std::cout << dwBufferSize << std::endl;
  }
}

上述你可以用RAII机制去封装hFile从而让其在函数退出后,直接调用CloseHandle(hFile);。C++智能指针提供了自定义deleter的功能,这就可以让我们使用这个deleter的功能,改写代码如下。不过本人更倾向于使用类似于golang defer的实现方式。

void MemroyLeakFileHandle()
{
  HANDLE hFile = CreateFile(LR"(C:\test\doc.txt)", 
    GENERIC_READ,
    FILE_SHARE_READ,
    NULL, 
    OPEN_EXISTING, 
    FILE_ATTRIBUTE_NORMAL,
    NULL);
  std::unique_ptr< HANDLE, std::function<void(HANDLE*)>> phFile(
    &hFile, 
    [](HANDLE* pHandle) {
      if (nullptr != pHandle)
      {
        std::cout << "Close Handle" << std::endl;
        CloseHandle(*pHandle);
      }
    });

  if (INVALID_HANDLE_VALUE == *phFile)
  {
    std::cerr << "Open File error!" << std::endl;
    return;
  }

  const int BUFFER_SIZE = 100;
  char pDataBuffer[BUFFER_SIZE];
  DWORD dwBufferSize;
  if (ReadFile(*phFile,
      pDataBuffer,
      BUFFER_SIZE,
      &dwBufferSize,
      NULL))
  {
    std::cout << dwBufferSize << std::endl;
  }
}
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-10-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 C语言与CPP编程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 函数内或者类成员内存未释放
  • 2. delete []
  • 3. delete (void*)
  • 4. Virtual destructor
  • 5. 对象循环引用
  • 6. 资源泄露
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档