前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Hive重点难点:Hive原理&优化&面试(下)

Hive重点难点:Hive原理&优化&面试(下)

作者头像
大数据真好玩
发布2021-10-25 16:26:45
1.4K0
发布2021-10-25 16:26:45
举报
文章被收录于专栏:暴走大数据暴走大数据
《Hive重点难点:Hive原理&优化&面试(上)
Hive计算引擎

目前Hive支持MapReduce、Tez和Spark 三种计算引擎。

MR计算引擎

MR运行的完整过程:

Map在读取数据时,先将数据拆分成若干数据,并读取到Map方法中被处理。数据在输出的时候,被分成若干分区并写入内存缓存(buffer)中,内存缓存被数据填充到一定程度会溢出到磁盘并排序,当Map执行完后会将一个机器上输出的临时文件进行归并存入到HDFS中。

当Reduce启动时,会启动一个线程去读取Map输出的数据,并写入到启动Reduce机器的内存中,在数据溢出到磁盘时会对数据进行再次排序。当读取数据完成后会将临时文件进行合并,作为Reduce函数的数据源。

Tez计算引擎

Apache Tez是进行大规模数据处理且支持DAG作业的计算框架,它直接源于MapReduce框架,除了能够支持MapReduce特性,还支持新的作业形式,并允许不同类型的作业能够在一个集群中运行。

Tez将原有的Map和Reduce两个操作简化为一个概念——Vertex,并将原有的计算处理节点拆分成多个组成部分:Vertex Input、Vertex Output、Sorting、Shuffling和Merging。计算节点之间的数据通信被统称为Edge,这些分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业。

通过允许Apache Hive运行复杂的DAG任务,Tez可以用来处理数据,之前需要多个MR jobs,现在一个Tez任务中。

Tez和MapReduce作业的比较:

  • Tez绕过了MapReduce很多不必要的中间的数据存储和读取的过程,直接在一个作业中表达了MapReduce需要多个作业共同协作才能完成的事情。
  • Tez和MapReduce一样都运行使用YARN作为资源调度和管理。但与MapReduce on YARN不同,Tez on YARN并不是将作业提交到ResourceManager,而是提交到AMPoolServer的服务上,AMPoolServer存放着若干已经预先启动ApplicationMaster的服务。
  • 当用户提交一个作业上来后,AMPoolServer从中选择一个ApplicationMaster用于管理用户提交上来的作业,这样既可以节省ResourceManager创建ApplicationMaster的时间,而又能够重用每个ApplicationMaster的资源,节省了资源释放和创建时间。

Tez相比于MapReduce有几点重大改进:

  • 当查询需要有多个reduce逻辑时,Hive的MapReduce引擎会将计划分解,每个Redcue提交一个MR作业。这个链中的所有MR作业都需要逐个调度,每个作业都必须从HDFS中重新读取上一个作业的输出并重新洗牌。而在Tez中,几个reduce接收器可以直接连接,数据可以流水线传输,而不需要临时HDFS文件,这种模式称为MRR(Map-reduce-reduce*)。
  • Tez还允许一次发送整个查询计划,实现应用程序动态规划,从而使框架能够更智能地分配资源,并通过各个阶段流水线传输数据。对于更复杂的查询来说,这是一个巨大的改进,因为它消除了IO/sync障碍和各个阶段之间的调度开销。
  • 在MapReduce计算引擎中,无论数据大小,在洗牌阶段都以相同的方式执行,将数据序列化到磁盘,再由下游的程序去拉取,并反序列化。Tez可以允许小数据集完全在内存中处理,而MapReduce中没有这样的优化。仓库查询经常需要在处理完大量的数据后对小型数据集进行排序或聚合,Tez的优化也能极大地提升效率。
Spark计算引擎

Apache Spark是专为大规模数据处理而设计的快速、通用支持DAG(有向无环图)作业的计算引擎,类似于Hadoop MapReduce的通用并行框架,可用来构建大型的、低延迟的数据分析应用程序。

Spark是用于大规模数据处理的统一分析引擎,基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量硬件之上,形成集群。

Spark运行流程

Spark具有以下几个特性。

1.高效性

Spark会将作业构成一个DAG,优化了大型作业一些重复且浪费资源的操作,对查询进行了优化,重新编写了物理执行引擎,如可以实现MRR模式。

2.易用性

Spark不同于MapReducer只提供两种简单的编程接口,它提供了多种编程接口去操作数据,这些操作接口如果使用MapReduce去实现,需要更多的代码。Spark的操作接口可以分为两类:transformation(转换)和action(执行)。Transformation包含map、flatmap、distinct、reduceByKey和join等转换操作;Action包含reduce、collect、count和first等操作。

3.通用性

Spark针对实时计算、批处理、交互式查询,提供了统一的解决方案。但在批处理方面相比于MapReduce处理同样的数据,Spark所要求的硬件设施更高,MapReduce在相同的设备下所能处理的数据量会比Spark多。所以在实际工作中,Spark在批处理方面只能算是MapReduce的一种补充。

4.兼容性

Spark和MapReduce一样有丰富的产品生态做支撑。例如Spark可以使用YARN作为资源管理器,Spark也可以处理Hbase和HDFS上的数据。

Hive存储与压缩
Hive存储格式

Hive支持的存储数的格式主要有:TEXTFILE(行式存储) 、SEQUENCEFILE(行式存储)、ORC(列式存储)、PARQUET(列式存储)。

行式存储和列式存储

上图左边为逻辑表,右边第一个为行式存储,第二个为列式存储。

行存储的特点:查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。select *

列存储的特点:因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。select 某些字段效率更高。

  • TEXTFILE

默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。

  • ORC格式

Orc (Optimized Row Columnar)是hive 0.11版里引入的新的存储格式。

可以看到每个Orc文件由1个或多个stripe组成,每个stripe250MB大小,这个Stripe实际相当于RowGroup概念,不过大小由4MB->250MB,这样能提升顺序读的吞吐率。每个Stripe里有三部分组成,分别是Index Data,Row Data,Stripe Footer:

  1. Index Data:一个轻量级的index,默认是每隔1W行做一个索引。这里做的索引只是记录某行的各字段在Row Data中的offset。
  2. Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个Stream来存储。
  3. Stripe Footer:存的是各个stripe的元数据信息

每个文件有一个File Footer,这里面存的是每个Stripe的行数,每个Column的数据类型信息等;每个文件的尾部是一个PostScript,这里面记录了整个文件的压缩类型以及FileFooter的长度信息等。在读取文件时,会seek到文件尾部读PostScript,从里面解析到File Footer长度,再读FileFooter,从里面解析到各个Stripe信息,再读各个Stripe,即从后往前读。

  • PARQUET格式

Parquet是面向分析型业务的列式存储格式,由Twitter和Cloudera合作开发,2015年5月从Apache的孵化器里毕业成为Apache顶级项目。

Parquet文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的。

通常情况下,在存储Parquet数据的时候会按照Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个Block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。Parquet文件的格式如下图所示。

上图展示了一个Parquet文件的内容,一个文件中可以存储多个行组,文件的首位都是该文件的Magic Code,用于校验它是否是一个Parquet文件,Footer length记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的Schema信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前Parquet中还不支持索引页。

Hive压缩格式

在实际工作当中,hive当中处理的数据,一般都需要经过压缩,前期我们在学习hadoop的时候,已经配置过hadoop的压缩,我们这里的hive也是一样的可以使用压缩来节省我们的MR处理的网络带宽

mr支持的压缩格式:

hadoop支持的解压缩的类:

压缩性能的比较:

Snappy生成的压缩文件要大20%到100%。在64位模式下的core i7处理器的单内核上,Snappy以250 MB/秒或更多的速度压缩,并以500 MB/秒或更多的速度解压。

实现压缩hadoop需要配置的压缩参数:

hive配置压缩的方式:

  1. 开启map端的压缩方式:
代码语言:javascript
复制
1.1)开启hive中间传输数据压缩功能
 hive (default)>set hive.exec.compress.intermediate=true;
1.2)开启mapreduce中map输出压缩功能
 hive (default)>set mapreduce.map.output.compress=true;
1.3)设置mapreduce中map输出数据的压缩方式
 hive (default)>set mapreduce.map.output.compress.codec= org.apache.hadoop.io.compress.SnappyCodec;
1.4)执行查询语句
 select count(1) from score;
  1. 开启reduce端的压缩方式
代码语言:javascript
复制
1)开启hive最终输出数据压缩功能
 hive (default)>set hive.exec.compress.output=true;
2)开启mapreduce最终输出数据压缩
 hive (default)>set mapreduce.output.fileoutputformat.compress=true;
3)设置mapreduce最终数据输出压缩方式
 hive (default)> set mapreduce.output.fileoutputformat.compress.codec = org.apache.hadoop.io.compress.SnappyCodec;
4)设置mapreduce最终数据输出压缩为块压缩
 hive (default)>set mapreduce.output.fileoutputformat.compress.type=BLOCK;
5)测试一下输出结果是否是压缩文件
 insert overwrite local directory '/export/servers/snappy' select * from score distribute by s_id sort by s_id desc;
存储和压缩相结合

ORC存储方式的压缩:

创建一个非压缩的ORC存储方式:

代码语言:javascript
复制
1)建表语句
    create table log_orc_none(
    track_time string,
    url string,
    session_id string,
    referer string,
    ip string,
    end_user_id string,
    city_id string
    )ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS orc tblproperties ("orc.compress"="NONE");
2)插入数据
 insert into table log_orc_none select * from log_text ;
3)查看插入后数据
 dfs -du -h /user/hive/warehouse/myhive.db/log_orc_none;
 结果显示:
 7.7 M  /user/hive/warehouse/log_orc_none/123456_0

创建一个SNAPPY压缩的ORC存储方式:

代码语言:javascript
复制
1)建表语句
    create table log_orc_snappy(
    track_time string,
    url string,
    session_id string,
    referer string,
    ip string,
    end_user_id string,
    city_id string
    )ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS orc tblproperties ("orc.compress"="SNAPPY");
2)插入数据
 insert into table log_orc_snappy select * from log_text ;
3)查看插入后数据
 dfs -du -h /user/hive/warehouse/myhive.db/log_orc_snappy ;
 结果显示: 
 3.8 M  /user/hive/warehouse/log_orc_snappy/123456_0
4)上一节中默认创建的ORC存储方式,导入数据后的大小为
 2.8 M  /user/hive/warehouse/log_orc/123456_0
 比Snappy压缩的还小。原因是orc存储文件默认采用ZLIB压缩。比snappy压缩的小。
5)存储方式和压缩总结:
 在实际的项目开发当中,hive表的数据存储格式一般选择:orc或parquet。压缩方式一般选择snappy。
主流存储文件性能对比

从存储文件的压缩比和查询速度两个角度对比。

压缩比比较:

  • TextFile
代码语言:javascript
复制
(1)创建表,存储数据格式为TEXTFILE
    create table log_text (
    track_time string,
    url string,
    session_id string,
    referer string,
    ip string,
    end_user_id string,
    city_id string
    )ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE ;

(2)向表中加载数据
 load data local inpath '/export/servers/hivedatas/log.data' into table log_text ;

(3)查看表中数据大小,大小为18.1M
 dfs -du -h /user/hive/warehouse/myhive.db/log_text;
 结果显示: 
 18.1 M  /user/hive/warehouse/log_text/log.data
  • ORC
代码语言:javascript
复制
(1)创建表,存储数据格式为ORC
    create table log_orc(
    track_time string,
    url string,
    session_id string,
    referer string,
    ip string,
    end_user_id string,
    city_id string
    )ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS orc ;

(2)向表中加载数据
 insert into table log_orc select * from log_text ;

(3)查看表中数据大小
 dfs -du -h /user/hive/warehouse/myhive.db/log_orc;
 结果显示:
 2.8 M  /user/hive/warehouse/log_orc/123456_0
  • Parquet
代码语言:javascript
复制
1)创建表,存储数据格式为parquet
    create table log_parquet(
    track_time string,
    url string,
    session_id string,
    referer string,
    ip string,
    end_user_id string,
    city_id string
    )ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS PARQUET ; 

2)向表中加载数据
 insert into table log_parquet select * from log_text ;

3)查看表中数据大小
 dfs -du -h /user/hive/warehouse/myhive.db/log_parquet;
 结果显示:
 13.1 M  /user/hive/warehouse/log_parquet/123456_0

数据压缩比结论: ORC > Parquet > textFile

存储文件的查询效率测试

  • textFile
代码语言:javascript
复制
hive (default)> select count(*) from log_text;
_c0
100000
Time taken: 21.54 seconds, Fetched: 1 row(s)
  • ORC
代码语言:javascript
复制
hive (default)> select count(*) from log_orc;
_c0
100000
Time taken: 20.867 seconds, Fetched: 1 row(s)
  • Parquet
代码语言:javascript
复制
hive (default)> select count(*) from log_parquet; 
_c0
100000
Time taken: 22.922 seconds, Fetched: 1 row(s)

存储文件的查询效率比较: ORC > TextFile > Parquet

Hive企业级性能优化
Hive性能问题排查的方式

当我们发现一条SQL语句执行时间过长或者不合理时,我们就要考虑对SQL进行优化,优化首先得进行问题排查,那么我们可以通过哪些方式进行排查呢。

经常使用关系型数据库的同学可能知道关系型数据库的优化的诀窍-看执行计划。如Oracle数据库,它有多种类型的执行计划,通过多种执行计划的配合使用,可以看到根据统计信息推演的执行计划,即Oracle推断出来的未真正运行的执行计划;还可以看到实际执行任务的执行计划;能够观察到从数据读取到最终呈现的主要过程和中间的量化数据。可以说,在Oracle开发领域,掌握合适的环节,选用不同的执行计划,SQL调优就不是一件难事。

Hive中也有执行计划,但是Hive的执行计划都是预测的,这点不像Oracle和SQL Server有真实的计划,可以看到每个阶段的处理数据、消耗的资源和处理的时间等量化数据。Hive提供的执行计划没有这些数据,这意味着虽然Hive的使用者知道整个SQL的执行逻辑,但是各阶段耗用的资源状况和整个SQL的执行瓶颈在哪里是不清楚的。

想要知道HiveSQL所有阶段的运行信息,可以查看YARN提供的日志。查看日志的链接,可以在每个作业执行后,在控制台打印的信息中找到。如下图所示:

Hive提供的执行计划目前可以查看的信息有以下几种:

  1. 查看执行计划的基本信息,即explain;
  2. 查看执行计划的扩展信息,即explain extended;
  3. 查看SQL数据输入依赖的信息,即explain dependency;
  4. 查看SQL操作相关权限的信息,即explain authorization;
  5. 查看SQL的向量化描述信息,即explain vectorization。

在查询语句的SQL前面加上关键字explain是查看执行计划的基本方法。用explain打开的执行计划包含以下两部分:

  • 作业的依赖关系图,即STAGE DEPENDENCIES;
  • 每个作业的详细信息,即STAGE PLANS。
Hive性能调优的方式

为什么都说性能优化这项工作是比较难的,因为一项技术的优化,必然是一项综合性的工作,它是多门技术的结合。我们如果只局限于一种技术,那么肯定做不好优化的。

下面将从多个完全不同的角度来介绍Hive优化的多样性,我们先来一起感受下。

1. SQL语句优化

SQL语句优化涉及到的内容太多,因篇幅有限,不能一一介绍到,所以就拿几个典型举例,让大家学到这种思想,以后遇到类似调优问题可以往这几个方面多思考下。

  1. union all
代码语言:javascript
复制
insert into table stu partition(tp) 
select s_age,max(s_birth) stat,'max' tp 
from stu_ori
group by s_age

union all

insert into table stu partition(tp) 
select s_age,min(s_birth) stat,'min' tp 
from stu_ori
group by s_age;

我们简单分析上面的SQl语句,就是将每个年龄的最大和最小的生日获取出来放到同一张表中,union all 前后的两个语句都是对同一张表按照s_age进行分组,然后分别取最大值和最小值。对同一张表相同的字段进行两次分组,这造成了极大浪费,我们能不能改造下呢,当然是可以的,为大家介绍一个语法:from ... insert into ... ,这个语法将from前置,作用就是使用一张表,可以进行多次插入操作:

代码语言:javascript
复制
--开启动态分区 
set hive.exec.dynamic.partition=true; 
set hive.exec.dynamic.partition.mode=nonstrict; 

from stu_ori 

insert into table stu partition(tp) 
select s_age,max(s_birth) stat,'max' tp 
group by s_age

insert into table stu partition(tp) 
select s_age,min(s_birth) stat,'min' tp 
group by s_age;

上面的SQL就可以对stu_ori表的s_age字段分组一次而进行两次不同的插入操作。

这个例子告诉我们一定要多了解SQL语句,如果我们不知道这种语法,一定不会想到这种方式的。

  1. distinct

先看一个SQL,去重计数:

代码语言:javascript
复制
select count(1) 
from( 
  select s_age 
  from stu 
  group by s_age 
) b;

这是简单统计年龄的枚举值个数,为什么不用distinct?

代码语言:javascript
复制
select count(distinct s_age) 
from stu;

有人说因为在数据量特别大的情况下使用第一种方式能够有效避免Reduce端的数据倾斜,但是事实如此吗?

我们先不管数据量特别大这个问题,就当前的业务和环境下使用distinct一定会比上面那种子查询的方式效率高。原因有以下几点:

  • 上面进行去重的字段是年龄字段,要知道年龄的枚举值是非常有限的,就算计算1岁到100岁之间的年龄,s_age的最大枚举值才是100,如果转化成MapReduce来解释的话,在Map阶段,每个Map会对s_age去重。由于s_age枚举值有限,因而每个Map得到的s_age也有限,最终得到reduce的数据量也就是map数量s_age枚举值的个数。
  • distinct的命令会在内存中构建一个hashtable,查找去重的时间复杂度是O(1);group by在不同版本间变动比较大,有的版本会用构建hashtable的形式去重,有的版本会通过排序的方式, 排序最优时间复杂度无法到O(1)。另外,第一种方式(group by)去重会转化为两个任务,会消耗更多的磁盘网络I/O资源。
  • 最新的Hive 3.0中新增了 count(distinct ) 优化,通过配置 hive.optimize.countdistinct,即使真的出现数据倾斜也可以自动优化,自动改变SQL执行的逻辑。
  • 第二种方式(distinct)比第一种方式(group by)代码简洁,表达的意思简单明了,如果没有特殊的问题,代码简洁就是优!
  • 数据格式优化

Hive提供了多种数据存储组织格式,不同格式对程序的运行效率也会有极大的影响。

Hive提供的格式有TEXT、SequenceFile、RCFile、ORC和Parquet等。

SequenceFile是一个二进制key/value对结构的平面文件,在早期的Hadoop平台上被广泛用于MapReduce输出/输出格式,以及作为数据存储格式。

Parquet是一种列式数据存储格式,可以兼容多种计算引擎,如MapRedcue和Spark等,对多层嵌套的数据结构提供了良好的性能支持,是目前Hive生产环境中数据存储的主流选择之一。

ORC优化是对RCFile的一种优化,它提供了一种高效的方式来存储Hive数据,同时也能够提高Hive的读取、写入和处理数据的性能,能够兼容多种计算引擎。事实上,在实际的生产环境中,ORC已经成为了Hive在数据存储上的主流选择之一。

我们使用同样数据及SQL语句,只是数据存储格式不同,得到如下执行时长:

注:CPU时间:表示运行程序所占用服务器CPU资源的时间。用户等待耗时:记录的是用户从提交作业到返回结果期间用户等待的所有时间。

查询TextFile类型的数据表耗时33分钟, 查询ORC类型的表耗时1分52秒,时间得以极大缩短,可见不同的数据存储格式也能给HiveSQL性能带来极大的影响。

  1. 小文件过多优化

小文件如果过多,对 hive 来说,在进行查询时,每个小文件都会当成一个块,启动一个Map任务来完成,而一个Map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的Map数量是受限的。

  1. 并行执行优化

Hive会将一个查询转化成一个或者多个阶段。这样的阶段可以是MapReduce阶段、抽样阶段、合并阶段、limit阶段。或者Hive执行过程中可能需要的其他阶段。默认情况下,Hive一次只会执行一个阶段。不过,某个特定的job可能包含众多的阶段,而这些阶段可能并非完全互相依赖的,也就是说有些阶段是可以并行执行的,这样可能使得整个job的执行时间缩短。如果有更多的阶段可以并行执行,那么job可能就越快完成。

通过设置参数hive.exec.parallel值为true,就可以开启并发执行。在共享集群中,需要注意下,如果job中并行阶段增多,那么集群利用率就会增加。

代码语言:javascript
复制
set hive.exec.parallel=true; //打开任务并行执行
set hive.exec.parallel.thread.number=16; //同一个sql允许最大并行度,默认为8。

当然得是在系统资源比较空闲的时候才有优势,否则没资源,并行也起不来。

  1. JVM优化

JVM重用是Hadoop调优参数的内容,其对Hive的性能具有非常大的影响,特别是对于很难避免小文件的场景或task特别多的场景,这类场景大多数执行时间都很短。

Hadoop的默认配置通常是使用派生JVM来执行map和Reduce任务的。这时JVM的启动过程可能会造成相当大的开销,尤其是执行的job包含有成百上千task任务的情况。JVM重用可以使得JVM实例在同一个job中重新使用N次。N的值可以在Hadoop的mapred-site.xml文件中进行配置。通常在10-20之间,具体多少需要根据具体业务场景测试得出。

代码语言:javascript
复制
<property>
  <name>mapreduce.job.jvm.numtasks</name>
  <value>10</value>
  <description>How many tasks to run per jvm. If set to -1, there is
  no limit. 
  </description>
</property>

我们也可以在hive中设置

代码语言:javascript
复制
set  mapred.job.reuse.jvm.num.tasks=10; //这个设置来设置我们的jvm重用

这个功能的缺点是,开启JVM重用将一直占用使用到的task插槽,以便进行重用,直到任务完成后才能释放。如果某个“不平衡的”job中有某几个reduce task执行的时间要比其他Reduce task消耗的时间多的多的话,那么保留的插槽就会一直空闲着却无法被其他的job使用,直到所有的task都结束了才会释放。

  1. 推测执行优化

在分布式集群环境下,因为程序Bug(包括Hadoop本身的bug),负载不均衡或者资源分布不均等原因,会造成同一个作业的多个任务之间运行速度不一致,有些任务的运行速度可能明显慢于其他任务(比如一个作业的某个任务进度只有50%,而其他所有任务已经运行完毕),则这些任务会拖慢作业的整体执行进度。为了避免这种情况发生,Hadoop采用了推测执行(Speculative Execution)机制,它根据一定的法则推测出“拖后腿”的任务,并为这样的任务启动一个备份任务,让该任务与原始任务同时处理同一份数据,并最终选用最先成功运行完成任务的计算结果作为最终结果。

设置开启推测执行参数:Hadoop的mapred-site.xml文件中进行配置:

代码语言:javascript
复制
<property>
  <name>mapreduce.map.speculative</name>
  <value>true</value>
  <description>If true, then multiple instances of some map tasks 
               may be executed in parallel.</description>
</property>

<property>
  <name>mapreduce.reduce.speculative</name>
  <value>true</value>
  <description>If true, then multiple instances of some reduce tasks 
               may be executed in parallel.</description>
</property>

hive本身也提供了配置项来控制reduce-side的推测执行:

set hive.mapred.reduce.tasks.speculative.execution=true 关于调优这些推测执行变量,还很难给一个具体的建议。如果用户对于运行时的偏差非常敏感的话,那么可以将这些功能关闭掉。如果用户因为输入数据量很大而需要执行长时间的map或者Reduce task的话,那么启动推测执行造成的浪费是非常巨大大。

最后

代码优化原则:

  • 理透需求原则,这是优化的根本;
  • 把握数据全链路原则,这是优化的脉络;
  • 坚持代码的简洁原则,这让优化更加简单;
  • 没有瓶颈时谈论优化,这是自寻烦恼。
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-10-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据真好玩 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 《Hive重点难点:Hive原理&优化&面试(上)》
  • Hive计算引擎
    • MR计算引擎
      • Tez计算引擎
        • Spark计算引擎
        • Hive存储与压缩
          • Hive存储格式
            • Hive压缩格式
              • 存储和压缩相结合
                • 主流存储文件性能对比
                • Hive企业级性能优化
                  • Hive性能问题排查的方式
                  • Hive性能调优的方式
                    • 最后
                    相关产品与服务
                    对象存储
                    对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
                    领券
                    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档