Loading [MathJax]/jax/input/TeX/jax.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >InnoDB为什么要选择B+树来存储数据

InnoDB为什么要选择B+树来存储数据

原创
作者头像
weylan
修改于 2021-11-17 02:27:58
修改于 2021-11-17 02:27:58
1.9K0
举报
文章被收录于专栏:小石头记小石头记

关于InnoDB索引,我们可能知道InnDB索引是用B+树实现的,而B+树就是一种能优化查询速度的数据结构。但我们又没想过这样一个问题,能优化查询速度的数据结构有很多,为什么InnoDB要采用B+树?

常见优化查询速度数据结构

哈希表

哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的键即 key,就可以找到其对应的值即 Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。

不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。

假设现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:

图中,User2 和 User4 根据身份证号算出来的值都是 N,但没关系,后面还跟了一个链表。假设,这时候你要查 ID_card_n2 对应的名字是什么,处理步骤就是:首先,将 ID_card_n2 通过哈希函数算出 N;然后,按顺序遍历,找到 User2。

需要注意的是,图中四个 ID_card_n 的值并不是递增的,这样做的好处是增加新的 User 时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。

可以设想下,如果现在要找身份证号在ID_card_X, ID_card_Y这个区间的所有用户,就必须全部扫描一遍了。

所以,哈希表这种结构适用于只有等值查询的场景,比如 Memcached 及其他一些 NoSQL 引擎。

有序数组

有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:

这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查 ID_card_n2 对应的名字,用二分法就可以快速得到,这个时间复杂度是 O(log(N))。

同时很显然,这个索引结构支持范围查询。要查身份证号在ID_card_X, ID_card_Y区间的 User,可以先用二分法找到 ID_card_X(如果不存在 ID_card_X,就找到大于 ID_card_X 的第一个 User),然后向右遍历,直到查到第一个大于 ID_card_Y 的身份证号,退出循环。

如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,往中间插入一个记录就必须得挪动后面所有的记录,成本太高。

所以,有序数组索引只适用于静态存储引擎,比如要保存的是 2017 年某个城市的所有人口信息,这类不会再修改的数据。

二叉搜索树

上面根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示:

二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。这样如果你要查 ID_card_n2 的话,按照图中的搜索顺序就是按照 UserA -> UserC -> UserF -> User2 这个路径得到。这个时间复杂度是 O(log(N))

当然为了维持 O(log(N))的查询复杂度,就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是 O(log(N))

树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。

可以想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要 10 ms 左右的寻址时间。也就是说,对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10 ms 的时间,这个查询可真够慢的。

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。

以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。这棵树高是 4 的时候,就可以存 1200 的 3 次方个值,这已经 17 亿了。考虑到树根的数据块总是在内存中的,一个 10 亿行的表上一个整数字段的索引,查找一个值最多只需要访问 3 次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。

N 叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。

数据库引擎常用数据结构

B树

B树也称B-树,它是一颗多路平衡查找树,B树和后面讲到的B+树也是从最简单的二叉树变换而来的,并没有什么神秘的地方,下面我们来看看B树的定义。

  • 每个节点最多有m-1个关键字(可以存有的键值对)。
  • 根节点最少可以只有1个关键字。
  • 非根节点至少有m/2个关键字。
  • 每个节点中的关键字都按照从小到大的顺序排列,每个关键字的左子树中的所有关键字都小于它,而右子树中的所有关键字都大于它。
  • 所有叶子节点都位于同一层,或者说根节点到每个叶子节点的长度都相同。
  • 每个节点都存有索引和数据,也就是对应的key和value。

B+树

B+树其实和B树是非常相似的,我们首先看看相同点。

相同点:

根节点至少一个元素

非根节点元素范围:m/2<=k<=m1

不同点:

B+树有两种类型的节点:内部结点(也称索引结点)和叶子结点内部节点就是非叶子节点,内部节点不存储数据,只存储索引,数据都存储在叶子节点

内部结点中的key都按照从小到大的顺序排列,对于内部结点中的一个key,左树中的所有key都小于它,右子树中的key都大于等于它。叶子结点中的记录也按照key的大小排列。

每个叶子结点都存有相邻叶子结点的指针,叶子结点本身依关键字的大小自小而大顺序链接。

父节点存有右孩子的第一个元素的索引。

总结

B和B+树的区别在于,B+树的非叶子结点只包含导航信息,不包含实际的值,所有的叶子结点和相连的节点使用链表相连,便于区间查找和遍历。

B+ 树的优点在于:

  1. 由于B+树在内部节点上不包含数据信息,因此在内存页中能够存放更多的key。 数据存放的更加紧密,具有更好的空间局部性。因此访问叶子节点上关联的数据也具有更好的缓存命中率。
  2. B+树的叶子结点都是相链的,因此对整棵树的便利只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。而B树则需要进行每一层的递归遍历。相邻的元素可能在内存中不相邻,所以缓存命中性没有B+树好。

但是B树也有优点,其优点在于,由于B树的每一个节点都包含key和value,因此经常访问的元素可能离根节点更近,因此访问也更迅速。

参考

面试官问你B树和B+树,就把这篇文章丢给他

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
索引的常见的三种模型哈希表、有序数组、B+搜索树的区别和使用场景
索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。常见的索引模型有哈希表、有序数组、B+树。
共饮一杯无
2022/11/28
7570
索引的常见的三种模型哈希表、有序数组、B+搜索树的区别和使用场景
MySQL深入学习第四篇 - 深入浅出索引(上)
提到数据库索引,我想你并不陌生,在日常工作中会经常接触到。比如某一个 SQL 查询比较慢,分析完原因之后,你可能就会说“给某个字段加个索引吧”之类的解决方案。但到底什么是索引,索引又是如何工作的呢?今天就让我们一起来聊聊这个话题吧。
越陌度阡
2020/11/26
4040
MySQL深入学习第四篇 - 深入浅出索引(上)
数据库索引,你要了解的都在这里!
数据库索引好比是一本书前面的目录,能加快数据库的查询速度。索引是对数据库表中一个或多个列(例如,User 表的 '姓名' 列)的值进行排序的结构。如果想按特定用户的姓名来查找他或她,则与在表中搜索所有的行相比,索引有助于更快地获取信息。
JAVA日知录
2020/05/09
6110
MySQL实战之深入浅出索引(上)
提到数据库,大家肯定会想到数据库的索引,很多人都知道索引是为了提高查询效率的,那么今天我就给大家讲一下,什么是索引,索引的数据结构是什么,索引是如何工作的。
特特
2023/02/24
6260
数据库索引
数据库索引,在日常工作中会经常接触到,比如某一个 SQL 查询比较慢,分析原因后,经常会说 “给某个字段加个索引”,索引又是如何工作的?
王小明_HIT
2020/05/29
6870
数据库索引
Mysql索引解密(上)
索引是数据库概念最重要的概念之一,也是我们经常要使用的优化手段,索引的出现其实就是为了提高数据查询的效率,就像书的目录一样
小土豆Yuki
2020/07/21
4570
mysql的速度依赖之索引的原理以及如何利用好索引
缓存 show variables可以查看我们mysql的许多配置,我们查一些需要的参数可以使用类似于模糊匹配的方式如下:
名字是乱打的
2021/12/24
5040
mysql的速度依赖之索引的原理以及如何利用好索引
拜托,别再问我什么是B+树 了
每当我们执行某个 SQL 发现很慢时,都会下意识地反应是否加了索引,那么大家是否有想过加了索引为啥会使数据查找更快呢,索引的底层一般又是用什么结构存储的呢,相信大家看了标题已经有答案了,没错!B+树!那么它相对于一般的链表,哈希等有何不同,为何多数存储引擎都选择使用它呢,今天我就来揭开 B+ 树的面纱,相信看了此文,B+ 树不再神秘,对你理解以下高频面试题会大有帮助!
kunge
2020/04/08
5560
拜托,别再问我什么是B+树 了
小胖问我:MySQL 索引的原理是怎样的?(建议收藏)
mysql 作为一个关系型数据库,在国内使用应该是最广泛的。也许你司使用 Oracle、Pg 等等,但是大多数互联网公司,比如我司使用得最多的还是 Mysql,重要性不言而喻。
JavaFish
2021/03/23
6950
搞定面试官 - 能说说 MySQL InnoDB 索引模型是什么嘛?
那就是搞定面试官系列,我会把常见的面试知识通过这个专栏写出来,比如我们常见的 Java、MySQL、Redis、MQ 以及其他的一些技术框架。
周三不加班
2023/03/15
3860
搞定面试官 - 能说说 MySQL InnoDB 索引模型是什么嘛?
红黑树、B树、B+树
现代操作系统都使用虚拟内存来印射到物理内存,内存大小有限且价格昂贵,所以数据的持久化是在磁盘上。虚拟内存、物理内存、磁盘都使用页作为内存读取的最小单位。一般一页为4KB(8个扇区,每个扇区512B,8*512B=4KB)。
花落花相惜
2021/11/25
8890
MySQL数据库索引选择为什么使用B+树而不是跳表?
在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择使用B+树!
小冷coding
2023/05/24
7590
MySQL数据库索引选择为什么使用B+树而不是跳表?
数据库底层数据结构 B树B+树LSM树 详解对比与总结
我们熟知常用数据库MySQL MongoDB HBase等底层存储都用了各种树结构,如B树LSM树,不过为什么要用这些结构呢?
大鹅
2021/06/16
5.4K0
树结构系列(三):B树、B+树
平衡二叉树的查找效率是非常高的,并可以通过降低树的深度来提高查找的效率。但是当数据量非常大,树的存储的元素数量是有限的,这样会导致二叉查找树结构由于树的深度过大而造成磁盘 I/O 读写过于频繁,进而导致查询效率低下。
陈树义
2021/04/13
1.3K0
B树 B-树 B+树 B*树
B树 即二叉搜索树:        1.所有非叶子结点至多拥有两个儿子(Left和Right);        2.所有结点存储一个关键字;        3.非叶子结点的左指针指向小于其关键字的子
用户1154259
2018/01/17
1.8K0
B树 B-树 B+树 B*树
为什么MySQL数据库索引选择使用B+树?
在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择使用B+树!
Java后端技术
2018/08/09
1.7K0
为什么MySQL数据库索引选择使用B+树?
大白话mysql之深入浅出索引原理 - 上
当我们使用汉语字典查找某个字时,我们会先通过拼音目录查到那个字所在的页码,然后直接翻到字典的那一页,找到我们要查的字,通过拼音目录查找比我们拿起字典从头一页一页翻找要快的多,数据库索引也一样,索引就像书的目录,通过索引能极大提高数据查询的效率。
会玩code
2022/04/24
5180
大白话mysql之深入浅出索引原理 - 上
Mysql InnoDB 为啥选择B+树索引 转
Mysql数据库中的常见索引有多种方式,例如Hash索引,B-树索引,B+树索引,但是为啥mysql中默认是采用B+树索引索引呢?下面对这三种索引学习总结一下。B+树到底有啥优势? B-树
双面人
2019/04/10
6660
深入了解Mysql索引数据结构
提到数据库索引大家肯定不陌生,那到底什么是索引呢,索引是怎么工作的呢,今天就一起来聊聊这个话题 索引的出现就是为了解决数据库查询的效率问题,就像平时我们看书一样,想要找某个详细的内容,就先通过目录去找到大概的地方,再找具体的内容,索引就是数据库中的“目录” 下面我们进入今天的正题,索引数据结构的类型
JAVA葵花宝典
2020/09/08
6360
mysql索引为啥要选择B+树 (上)
不知道你有没有这种感觉,那些所谓的数据结构和算法,在日常开发工作中很少用到或者几乎不曾用到,可能只是在每次换工作准备面试的时候才会捡起来学习学习。
谭小谭
2019/06/03
6140
相关推荐
索引的常见的三种模型哈希表、有序数组、B+搜索树的区别和使用场景
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档