前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >时隔两年,CV大神何恺明最新一作:视觉预训练新范式MAE!大道至简!

时隔两年,CV大神何恺明最新一作:视觉预训练新范式MAE!大道至简!

作者头像
昱良
发布2021-11-19 11:25:08
6480
发布2021-11-19 11:25:08
举报


新智元报道

CV大神何恺明又出力作!团队提出MAE模型,将NLP领域大获成功的自监督预训练模式用在了计算机视觉任务上,效果拔群,在NLP和CV两大领域间架起了一座更简便的桥梁。

CV大神何恺明又出力作!

这次,何大神让BERT式预训练在CV上也能训的很好。

论文「Masked Autoencoders Are Scalable Vision Learners」证明了 masked autoencoders(MAE) 是一种可扩展的计算机视觉自监督学习方法。

目前,该论文已于11月11日提交在arxiv上。论文地址:https://arxiv.org/abs/2111.06377

论文成果简介

此文最大的贡献,可能是在NLP和CV两大领域之间架起了一座更简便的桥梁。

此前,大名鼎鼎的GPT和BERT已经将大型自然语言处理(NLP)模型的性能提升到了一个新的高度。

直观点讲,就是事先遮住一些文本片段,让AI模型通过自监督学习,通过海量语料库的预训练,逐步掌握上下文语境,把这些被遮住的片段,用尽可能合乎逻辑的方式填回去。

这和我们做「完形填空」的方式有些类似。经过海量数据的学习和训练,AI模型慢慢学会了自己生成自然文本。目前,随着GPT及其后续改进模型的不断进步,生成的自然文本几乎可以乱真。

现在,何恺明的这篇文章把NLP领域已被证明极其有效的方式,用在了计算机视觉(CV)领域,而且模型更简单。

一起先来看下效果:

遮住95%的像素后,仍能还原出物体的轮廓,这居然还能work!

本文提出了一种掩膜自编码器 (MAE)架构,可以作为计算机视觉的可扩展自监督学习器使用,而且效果拔群。

实现方法很简单:先将输入图像的随机部分予以屏蔽(Mask),再重建丢失的像素。

MAE模型结构与实现

本文提出的MAE架构如下:

在预训练期间,大比例的随机的图像块子集(如 75%)被屏蔽掉。编码器用于可见patch的小子集。在编码器之后引入掩码标记,并且完整的编码块和掩码标记集由一个小型解码器处理,该解码器以像素为单位重建原始图像。

预训练后,解码器被丢弃,编码器应用于未损坏的图像以生成识别任务的表示。

MAE 是一种简单的自编码方法,可以在给定部分观察的情况下重建原始信号。由编码器将观察到的信号映射到潜在表示,再由解码器从潜在表示重建原始信号。

与经典的自动编码器不同,MAE采用非对称设计,允许编码器仅对部分观察信号(无掩码标记)进行操作,并采用轻量级解码器从潜在表示和掩码标记中重建完整信号。

掩膜

将图像划分为规则的非重叠patch。对patch的子集进行采样并屏蔽剩余patch。我们的采样策略很简单:均匀分布,简单称为“随机抽样”。

MAE 编码器

编码器仅适用于可见的、未屏蔽的patch。编码器通过添加位置嵌入的线性投影嵌入patch,然后通过一系列 Transformer 块处理结果集。编码器只对整个集合的一小部分(如 25%)进行操作。

被屏蔽的patch会被移除;不使用掩码令牌。这样可以节约计算资源,使用一小部分计算和内存来训练非常大的编码器。

MAE解码器

解码器的输入是完整的令牌集。每个掩码标记代表一个共享的、学习过的向量,表示存在要预测的缺失patch。

解码器仅在预训练期间用于执行图像重建任务。因此,它的设计可以独立于编码器。实验中使用的解码器更加轻量级。通过这种非对称设计,显著减少了预训练时间。

图像目标的重建

MAE 通过预测每个掩码块的像素值来重建输入图像。

解码器输出中的每个元素都是一个表示补丁的像素值向量。解码器的最后一层是线性投影,其输出通道的数量等于补丁中像素值的数量。解码器的输出被重新整形以形成重建的图像。

MAE 预训练实施效率高,实现方式简单,而且不需要任何专门的稀疏操作。

从上图可以看出,随着输入图像被遮住的比例升高,MAE的性能迅速上升,在75%左右达到最佳效果。

性能惊艳:ImageNet-1K最高87.8%

与当前SOTA自监督预训练方法相比,对于 ViT-B 的表现结果都很接近。对于 ViT-L不同方法的结果就存在很大差距,这表明更大模型的挑战是减少过度拟合。

再看最后一列,仅使用ImageNet-1K数据时,ViT-Huge模型的最高精确度为87.8%,这明显超过了所有在ImageNet-21K 预训练的ViT变种模型。

作者总结道,与 BEiT方法相比,MAE更准确、更简单、更高效。

作者介绍

何恺明,本科就读于清华大学,博士毕业于香港中文大学多媒体实验室。

2011年加入微软亚洲研究院(MSRA)工作,主要研究计算机视觉和深度学习。2016年,加入Facebook AI Research(FAIR)担任研究科学家。

2020年1月11日,荣登AI全球最具影响力学者榜单。

参考资料:

https://arxiv.org/abs/2111.06377

https://www.zhihu.com/question/498364155/answers/updated

https://www.zhihu.com/question/498364155/answer/2219622610

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-11-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习算法与Python学习 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 与当前SOTA自监督预训练方法相比,对于 ViT-B 的表现结果都很接近。对于 ViT-L不同方法的结果就存在很大差距,这表明更大模型的挑战是减少过度拟合。
  • 作者介绍
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档