前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >EOS行为核心:解析插件chain_plugin

EOS行为核心:解析插件chain_plugin

作者头像
用户2569546
发布2021-11-23 10:42:02
4800
发布2021-11-23 10:42:02
举报
文章被收录于专栏:eosfanseosfans

以前曾动过写一写chain_plugin插件的念头,因为某些事情耽搁了,最近发现文彬先生写的一篇关于chain_plugin的介绍,真可谓面面俱到,高山仰止景行行止,遂经原作者同意转载至此,和大家一起分享学习。本文原文链接如下:

https://www.cnblogs.com/Evsward/p/chainPlugin.html

原作者还写了一系列的文,可以说我是看着原作者的文长大的(

),大家有兴趣的话也可以去博客园围观下。由于公众号正文内容不能超过5000字,因此本文只摘选前半部分,后面的rpc接口可以去cleos的main函数对应着去chain_plugin找到。

EOS提供了大量的rpc接口,其中功能性最强,使用最频繁的一部分接口是EOS的行为核心,由chain_api_plugin提供,具体实现是在chain_plugin。

一、接口列表chain_api_plugin

rpc调用逻辑,chainbase数据库底层原理,nodeos启动流程,plugin生命周期在前文都有介绍。本节直接研究chain_plugin的内容,研究入口会从chain_api_plugin中暴漏的rpc接口切入,这些接口是非常熟悉的,因为之前演练cleos相关命令时调用的也是rpc。首先展示一下所有的接口内容:

代码语言:javascript
复制
_http_plugin.add_api({
  CHAIN_RO_CALL(get_info, 200l),
  CHAIN_RO_CALL(get_block, 200),
  CHAIN_RO_CALL(get_block_header_state, 200),
  CHAIN_RO_CALL(get_account, 200),
  CHAIN_RO_CALL(get_code, 200),
  CHAIN_RO_CALL(get_code_hash, 200),
  CHAIN_RO_CALL(get_abi, 200),
  CHAIN_RO_CALL(get_raw_code_and_abi, 200),
  CHAIN_RO_CALL(get_raw_abi, 200),
  CHAIN_RO_CALL(get_table_rows, 200),
  CHAIN_RO_CALL(get_table_by_scope, 200),
  CHAIN_RO_CALL(get_currency_balance, 200),
  CHAIN_RO_CALL(get_currency_stats, 200),
  CHAIN_RO_CALL(get_producers, 200),
  CHAIN_RO_CALL(get_producer_schedule, 200),
  CHAIN_RO_CALL(get_scheduled_transactions, 200),
  CHAIN_RO_CALL(abi_json_to_bin, 200),
  CHAIN_RO_CALL(abi_bin_to_json, 200),
  CHAIN_RO_CALL(get_required_keys, 200),
  CHAIN_RO_CALL(get_transaction_id, 200),
  CHAIN_RW_CALL_ASYNC(push_block, chain_apis::read_write::push_block_results, 202),
  CHAIN_RW_CALL_ASYNC(push_transaction, chain_apis::read_write::push_transaction_results, 202),
  CHAIN_RW_CALL_ASYNC(push_transactions, chain_apis::read_write::push_transactions_results, 202)
});

这些接口可以分为两类,一类是通过宏CHAIN_RO_CALL调用的,另一类是通过宏CHAIN_RW_CALL_ASYNC调用。

(1) CHAIN_RO_CALL

代码语言:javascript
复制
#define CHAIN_RO_CALL(call_name, http_response_code) CALL(chain, ro_api, chain_apis::read_only, call_name, http_response_code)

采用同步只读的方式调用宏CALL。call_name是调用的函数名,http_response_code是响应码。下面进入宏CALL。

代码语言:javascript
复制
/**
 *  @attention 目前调用CALL函数的只有read_only应用。
 *  @param api_name "chain'
 *  @param api_handle app().get_plugin<chain_plugin>().get_read_only_api();
 *  @param api_namespace chain_apis::read_only
 *  @param call_name -INHERIT
 *  @param http_response_code -INHERIT
 */
#define CALL(api_name, api_handle, api_namespace, call_name, http_response_code) \
{std::string("/v1/" #api_name "/" #call_name), \ /*拼接接口url:http://ip:port/v1/chain/{call_name}*/ \
    /*
     * @param body:http请求体
     * @param cb:回调函数,用于返回处理结果
     */ \
   [api_handle](string, string body, url_response_callback cb) mutable { \
       api_handle.validate(); \
       try { \
          if (body.empty()) body = "{}"; \
          /*
           * api_handle为chain_plugin中read_only类的实例
           * call_name为函数名,实现体找chain_plugin.cpp文件
           * 函数参数1个:此处规定了一个命名规则,接口名加入后缀_param即为请求参数结构
           */ \
          auto result = api_handle.call_name(fc::json::from_string(body).as<api_namespace::call_name ## _params>()); \
          /*回调函数返回处理结果,此处也规定了一个命名规则,接口名加入后缀_result即为返回结构,转化为json的格式返回。*/ \
          cb(http_response_code, fc::json::to_string(result)); \
       } catch (...) { \
          /*捕捉到异常,调用http_plugin的异常处理函数handle_exception*/ \
          http_plugin::handle_exception(#api_name, #call_name, body, cb); \
       } \
    } \
}
api_handle参数

同步只读的请求传入的api_handle参数值为ro_api变量,该变量是在chain_api_plugin插件启动chain_api_plugin::plugin_startup时(插件的生命周期前文已有介绍)初始化的,

代码语言:javascript
复制
auto ro_api = app().get_plugin<chain_plugin>().get_read_only_api();

app()函数以及与application类相关的内容前文已经介绍过,通过get_plugin<chain_plugin>获取chain_plugin的实例,然后调用其成员函数get_read_only_api(),

代码语言:javascript
复制
chain_apis::read_only get_read_only_api() const { return chain_apis::read_only(chain(), get_abi_serializer_max_time()); } //注意const修饰符,函数体内返回值是不可修改的。

返回的是chain_apis::read_only构造函数返回的read_only实例。类read_only中包含了所有基于只读机制的接口实现,与上面接口列表中声明的保持一致。

代码语言:javascript
复制
read_only(const controller& db, const fc::microseconds& abi_serializer_max_time)
    : db(db), abi_serializer_max_time(abi_serializer_max_time) {}

因此,最后传入CALL宏的api_handle参数值实际就是这个类read_only的实例。之后使用该实例去调用call_name,就是简单的实例调用自身成员函数(一般这个成员函数是声明和实现都有的)的逻辑了。

(2) CHAIN_RW_CALL_ASYNC

代码语言:javascript
复制
#define CHAIN_RW_CALL_ASYNC(call_name, call_result, http_response_code) CALL_ASYNC(chain, rw_api, chain_apis::read_write, call_name, call_result, http_response_code)

采用异步读写的方式调用异步处理宏CALL_ASYNC。call_name是调用的函数名,call_result传入声明的结果接收体(例如chain_apis::read_write::push_transaction_results),http_response_code是响应码。下面进入宏CALL_ASYNC。

代码语言:javascript
复制
/**
 *  @attention 目前调用CALL_ASYNC函数的只有read_write的应用。
 *  @param api_name "chain'
 *  @param api_handle app().get_plugin<chain_plugin>().get_read_write_api();
 *  @param api_namespace chain_apis::read_write
 *  @param call_name -INHERIT
 *  @param call_result -INHERIT
 *  @param http_response_code -INHERIT
 */
#define CALL_ASYNC(api_name, api_handle, api_namespace, call_name, call_result, http_response_code) \
{std::string("/v1/" #api_name "/" #call_name), \ /*同上,拼接接口url:http://ip:port/v1/chain/{call_name}*/ \
    /*
     * http处理请求的函数结构不变,同上。
     * @param body:http请求体
     * @param cb:回调函数,用于返回处理结果
     */ \
   [api_handle](string, string body, url_response_callback cb) mutable { \
      if (body.empty()) body = "{}"; \
      api_handle.validate(); \
      /*
       * api_handle为chain_plugin中read_only类的实例
       * call_name为函数名,实现体找chain_plugin.cpp文件
       * 函数参数2个:
       * @param 此处规定了一个命名规则,接口名加入后缀_param即为请求参数结构
       * @param lambda表达式,将cb和body按值传递进内部函数,该内部函数整体作为异步操作的回调函数,注意与http的回调函数cb区分。
       */ \
      api_handle.call_name(fc::json::from_string(body).as<api_namespace::call_name ## _params>(),\
         [cb, body](const fc::static_variant<fc::exception_ptr, call_result>& result){\
            /*捕获异常,分发异常处理*/ \
            if (result.contains<fc::exception_ptr>()) {\
               try {\
                  result.get<fc::exception_ptr>()->dynamic_rethrow_exception();\
               } catch (...) {\
                  http_plugin::handle_exception(#api_name, #call_name, body, cb);\
               }\
            } else {\
                /*
                 * 异步处理成功,通过http的回调函数cb返回结果。
                 */ \
               cb(http_response_code, result.visit(async_result_visitor()));\
            }\
         });\
   }\
}

其中最后处理结果的语句比较令人好奇result.visit(async_result_visitor()) result的类型是:const fc::static_variant<fc::exception_ptr, call_result>& async_result_visitor()函数:

代码语言:javascript
复制
struct async_result_visitor : public fc::visitor<std::string> {
   template<typename T>
   std::string operator()(const T& v) const {
      return fc::json::to_string(v); //与CALL处理返回结果相同的是,此处做的也是转换json的工作。
   }
};

接着,进入fc库的static_variant.hpp文件中寻找类static_variant,它包含一个模板函数visit:

代码语言:javascript
复制
template<typename visitor>
typename visitor::result_type visit(const visitor& v)const {
    return impl::storage_ops<0, Types...>::apply(_tag, storage, v);
}

异步处理将处理结果转型放置在结果容器中。

api_handle参数

异步读写的请求传入的api_handle参数值为rw_api变量,该变量是在chain_api_plugin插件启动chain_api_plugin::plugin_startup时(插件的生命周期前文已有介绍)初始化的,

代码语言:javascript
复制
auto rw_api = app().get_plugin<chain_plugin>().get_read_write_api();

app()函数以及与application类相关的内容前文已经介绍过,通过get_plugin<chain_plugin>获取chain_plugin的实例,然后调用其成员函数get_read_write_api(),

代码语言:javascript
复制
chain_apis::read_write get_read_write_api() { return chain_apis::read_write(chain(), get_abi_serializer_max_time()); }

返回的是chain_apis::read_write构造函数返回的read_write实例。类read_write中包含了所有基于读写机制的接口实现,与上面接口列表中声明的保持一致。

代码语言:javascript
复制
read_write(controller& db, const fc::microseconds& abi_serializer_max_time)
   : db(db), abi_serializer_max_time(abi_serializer_max_time) {}


因此,最后传入CALL_ASYNC宏的api_handle参数值实际就是这个类read_write的实例。之后使用该实例去调用call_name,就是简单的实例调用自身成员函数(一般这个成员函数是声明和实现都有的)的逻辑了。

chain_api_plugin生命周期
  • set_program_options,空
  • plugin_initialize,空
  • plugin_startup,添加rpc接口,请求chain_plugin功能函数。
  • plugin_shutdown,空

二、结构体成员序列化FC_REFLECT

FC_REFLECT为结构体提供序列化成员的能力。

FC_REFLECT是FC库中提供反射功能的宏。反射的意义在于了解一个未知的对象,反射是不限编程语言的,通过反射能够获取到对象的成员结构。宏#define FC_REFLECT( TYPE, MEMBERS )内部又调用了宏#define FC_REFLECT_DERIVED( TYPE, INHERITS, MEMBERS ),反射功能的具体实现就不深入探究了。下面来看其应用,举个例子:

代码语言:javascript
复制
FC_REFLECT( eosio::chain_apis::read_only::get_required_keys_params, (transaction)(available_keys) )FC_REFLECT( eosio::chain_apis::read_only::get_required_keys_result, (required_keys) )

两行代码分别包含了关于get_required_keys的两个结构体,

代码语言:javascript
复制
struct get_required_keys_params {
 fc::variant transaction;
 flat_set<public_key_type> available_keys;
};struct get_required_keys_result {
 flat_set<public_key_type> required_keys;
};

get_required_keys是chain的RPC接口,结构体get_required_keys_params是该接口的请求参数的结构,而另一个get_required_keys_result是接口处理后返回的结构。

回过头继续看FC_REFLECT的两行代码,第一个参数传入的是结构体。第二个参数用圆括号包含,可以有多个,内容与结构体的成员一致。

FC_REFLECT实际上实现了面向对象编程中类成员的getter/setter方法。

三、chain_plugin生命周期

与基类定义的生命周期相同,也包含四个阶段。

chain_plugin::set_program_options

在nodeos程序调试部分有详细介绍。主要是添加chain_plugin相关的配置参数,一组是命令行的,另一组是来自配置文件的,其中命令行的配置项优先级更高。

chain_plugin::plugin_initialize

这个函数也是从nodeos程序入口而来,会传入配置项调用chain_plugin的初始化函数。初始胡函数获取到来自命令行和配置文件的中和配置参数以后,结合创世块配置,逐一处理相关参数逻辑。这些参数对应的处理逻辑如下表(对应controller的成员属性介绍)所示:

param

explanation

detail

action-blacklist

添加action黑名单

每一条数据是有账户和action名组成

key-blacklist

公钥黑名单

公钥集合

blocks-dir

设置数据目录

最终会处理为绝对路径保存到内存

checkpoint

检查点

缓存区块的检查点,用于快速扫描

wasm-runtime

虚拟机类型

可以指定运行时webassembly虚拟机类型

abi-serializer-max-time-ms

abi序列化最大时间

要提高这个数值防止abi序列化失败

chain-state-db-size-mb

链状态库大小

基于chainbase的状态主库的大小

chain-state-db-guard-size-mb

链状态库守卫大小

也是controller中提到的未包含在公开属性中的

reversible-blocks-db-size-mb

链可逆区块库大小

链可逆区块库也是基于chainbase的状态数据库

reversible-blocks-db-guard-size-mb

链可逆区块库守卫大小

也是controller中提到的未包含在公开属性中的

force-all-checks

是否强制执行所有检查

默认为false

disable-replay-opts

是否禁止重播参数

默认为false

contracts-console

是否允许合约输出到控制台

一般为了调试合约使用,默认为false

disable-ram-billing-notify-checks

是否允许内存账单通知

默认为false

extract-genesis-json/print-genesis-json

输出创世块配置

以json格式输出

export-reversible-blocks

导出可逆区块到路径

将可逆区块目录reversible中数据导入到指定路径

delete-all-blocks

删除所有区块数据

重置区块链

truncate-at-blocks

区块截取点

所有生效的指令都要截止到本参数设置的区块号

hard-replay-blockchain

强制重播区块链

清空状态库,通过repair_log获得backup,搭配fix-reversible-blocks从backup中恢复可逆区块到区块目录。

replay-blockchain

重播区块链

清空状态库,搭配fix-reversible-blocks从原区块目录的可逆区块目录自我修复

fix-reversible-blocks

修复可逆区块

调用函数recover_reversible_blocks传入源路径和新路径,可逆缓存大小,以及是否有截取点truncate-at-blocks

import-reversible-blocks

导入可逆区块路径(必须独立使用,没有其他参数命令)

清空可逆区块目录,调用import_reversible_blocks函数导入

snapshot

指定导入的快照路径

在controller的快照部分有详述

genesis-json

指定创世块配置文件

从文件中导出创世块的配置项到内存

genesis-timestamp

指定创世块的时间

同样将该时间配置到内存中对应的变量

read-mode

状态主库的读取模式

controller部分有详述

validation-mode

校验模式

controller部分有详述

chain_plugin参数处理完毕后,设置方法提供者(并没有找到该provider的应用)。接着转播信号到频道,为chain_plugin_impl的唯一指针my的connection属性赋值,创建信号槽。

  • pre_accepted_block_connection,连接信号pre_accepted_block,更新loaded_checkpoints区块检查点位置。
  • accepted_block_header_connection,连接信号accepted_block_header,承认区块头信号。
  • accepted_block_connection,连接信号accepted_block,承认区块信号。
  • irreversible_block_connection,连接信号irreversible_block,区块不可逆。
  • accepted_transaction_connection,连接信号accepted_transaction,承认事务。
  • applied_transaction_connection,连接信号applied_transaction,应用事务。
  • accepted_confirmation_connection,连接信号accepted_confirmation,承认确认。

chain_plugin的插件初始化工作完毕,主要是对chain_plugin的配置参数的处理,以及信号槽的实现。

chain_plugin::plugin_startup

chain_plugin插件的启动,首先是快照的处理,这部分在快照的内容中有介绍,是根据nodeos过来的快照参数,判断是否要加入快照参数调用controller的startup。这期间如有捕捉到异常,则执行controller的reset重置操作。然后根据controller的属性输出链日志信息。

chain_plugin::plugin_shutdown

重置所有的信号槽,重置controller。

四、RPC接口实现

外部rpc调用通过chain_api_plugin插件包裹的接口服务,内部接口的实现是在chain_plugin中,对应关系是在chain_api_plugin的接口列表,通过函数名字匹配。

1. 获取基本信息 get_info

代码语言:javascript
复制
// 返回值为read_only的实体成员get_info_results结构的实例。
read_only::get_info_results read_only::get_info(const read_only::get_info_params&) const {
   const auto& rm = db.get_resource_limits_manager();
   return {
      // 以下字段都与get_info_results结构匹配,最终构造出get_info_results实例返回。
      eosio::utilities::common::itoh(static_cast<uint32_t>(app().version())), // server_version
      db.get_chain_id(), // chain_id
      db.fork_db_head_block_num(), // head_block_num
      db.last_irreversible_block_num(), // last_irreversible_block_num
      db.last_irreversible_block_id(), // last_irreversible_block_id
      db.fork_db_head_block_id(), // head_block_id
      db.fork_db_head_block_time(), // head_block_time
      db.fork_db_head_block_producer(), // head_block_producer
      rm.get_virtual_block_cpu_limit(), // virtual_block_cpu_limit
      rm.get_virtual_block_net_limit(), // virtual_block_net_limit
      rm.get_block_cpu_limit(), // block_cpu_limit
      rm.get_block_net_limit(), // block_net_limit
      //std::bitset<64>(db.get_dynamic_global_properties().recent_slots_filled).to_string(), // recent_slots
      //__builtin_popcountll(db.get_dynamic_global_properties().recent_slots_filled) / 64.0, // participation_rate
      app().version_string(), // server_version_string
   };
}

可以看到get_info_results的部分字段是通过read_only::db对象获取,还有一部分资源相关的内容是通过db的资源限制管理器获得,而关于版本方面的数据是从application实例获得。

2. 获取区块信息 get_block

代码语言:javascript
复制
// 特殊的是,此处并没有创建一个get_block_result的结构体作为返回值的容器,是利用了variant语法将signed_block_ptr转换成可输出的状态。
fc::variant read_only::get_block(const read_only::get_block_params& params) const {
   signed_block_ptr block;
   // 如果参数block_num_or_id为空或者block_num_or_id的长度大于64,属于非法参数不处理,会报错。
   EOS_ASSERT(!params.block_num_or_id.empty() && params.block_num_or_id.size() <= 64, chain::block_id_type_exception, "Invalid Block number or ID, must be greater than 0 and less than 64 characters" );
   try {
      // 通过variant语法将参数block_num_or_id类型擦除然后通过as语法转化为block_id_type类型,
      block = db.fetch_block_by_id(fc::variant(params.block_num_or_id).as<block_id_type>());
      if (!block) {// 如果通过id的方法获得的block为空,则尝试使用区块号的方式获取。
         block = db.fetch_block_by_number(fc::to_uint64(params.block_num_or_id));// 利用to_uint64将参数转型。
      }// 如果获取失败,抛出异常,无效的参数block_num_or_id
   } EOS_RETHROW_EXCEPTIONS(chain::block_id_type_exception, "Invalid block ID: ${block_num_or_id}", ("block_num_or_id", params.block_num_or_id))

   EOS_ASSERT( block, unknown_block_exception, "Could not find block: ${block}", ("block", params.block_num_or_id));
   // 通过校验,开始返回对象。
   fc::variant pretty_output;
   // i将结果block的数据通过resolver解析到pretty_output
   abi_serializer::to_variant(*block, pretty_output, make_resolver(this, abi_serializer_max_time), abi_serializer_max_time);
   // 引用区块的前缀设置
   uint32_t ref_block_prefix = block->id()._hash[1];

   return fc::mutable_variant_object(pretty_output.get_object())
           ("id", block->id())
           ("block_num",block->block_num())
           ("ref_block_prefix", ref_block_prefix);
}

进一步研究区块的id是如何生成的,以及如何通过id获得区块号。是在block_heade.cpp中定义:

代码语言:javascript
复制
namespace eosio { namespace chain {
   digest_type block_header::digest()const
   {
      return digest_type::hash(*this);// hash算法为sha256,然后使用fc::raw::pack打包获取结果
   }

   uint32_t block_header::num_from_id(const block_id_type& id)
   {
      return fc::endian_reverse_u32(id._hash[0]);// 实际上是对区块id并入区块号的算法的逆向工程,获得区块号。
   }

   // id的类型为block_id_type
   block_id_type block_header::id()const
   {
      // id不包括签名区块头属性,尤其是生产者签名除外。
      block_id_type result = digest();//digest_type::hash(*this),this是id()的调用者。
      result._hash[0] &= 0xffffffff00000000;//对结果进行位操作,并入一个十六进制头。
      result._hash[0] += fc::endian_reverse_u32(block_num()); // 通过上一个区块id找到其区块号然后自增获得当前区块号。并入id数据成为其一部分。
      return result;
   }
} }

get_block拼接好id、block_num、ref_block_prefix最后三个字段以后,返回的数据结构如下图所示:

3. 获取区块头状态 get_block_header_state

注意与上面的get_block的实现区分,get_block_header_state是通过fetch_block_state_by_numberfetch_block_state_by_id函数获取到的是状态库中的区块对象,也就是说是可逆区块数据,而不是get_block通过fetch_block_by_numberfetch_block_by_id函数获取到的不可逆区块。 get_block_header_state获取到可逆区块以后,通过以下代码得到其区块头数据并返回。

fc::variant vo; fc::to_variant( static_cast<const block_header_state&>(*b), vo );// block_state_ptr b;return vo;

4. 获取账户信息 get_account

这个功能的实现函数代码较长,但做的工作实际上并不复杂,可以采用从返回的account数据结构来逆向分析该功能的实现方法:

代码语言:javascript
复制
struct get_account_results {
  name                       account_name; // 账户名,入参的值。
  uint32_t                   head_block_num = 0; // 头块号,controller的状态主库db获取
  fc::time_point             head_block_time; // 头块时间,controller的状态主库db获取

  bool                       privileged = false; // 是否超级账户,默认false。controller的状态主库db获取账户的属性之一。
  fc::time_point             last_code_update; // 最后的code修改时间,例如给账户set contract的时间。controller的状态主库db获取账户的属性之一。
  fc::time_point             created; // 账户创建时间。controller的状态主库db获取账户的属性之一。

  optional<asset>            core_liquid_balance; // 主币的余额,在accounts状态表里查到的

  int64_t                    ram_quota  = 0; // 内存限额(资源相关部分有详细介绍),从controller的资源管理器获取
  int64_t                    net_weight = 0; // 网络带宽资源权重,从controller的资源管理器获取
  int64_t                    cpu_weight = 0; // cpu资源权重,从controller的资源管理器获取

  account_resource_limit     net_limit; // 网络带宽资源,包括已使用、剩余可用、总量。从controller的资源管理器获取
  account_resource_limit     cpu_limit; // cpu带宽资源,包括已使用、剩余可用、总量。从controller的资源管理器获取
  int64_t                    ram_usage = 0; // 内存已使用量。从controller的资源管理器获取

  vector<permission>         permissions; // 账户的权限内容(账户多签名部分有详细介绍),在状态主库的表里查到的。

  fc::variant                total_resources; // 总资源量,包括网络、cpu、内存资源总量。在userres状态表里查到的
  fc::variant                self_delegated_bandwidth; // 自我抵押带宽。在delband状态表里查到的
  fc::variant                refund_request; // 退款请求。在refunds状态表里查到的
  fc::variant                voter_info; // 投票相关。在voters状态表里查到的
};

5. 获取账户code信息 get_code

注意该接口修改了源码,不支持返回wast数据了。因此在请求该接口的时候,要使用的参数如下:

代码语言:javascript
复制
{
    "account_name": "eosio.token",
    "code_as_wasm": true
}

返回的数据将包括

  • 该账户的名字。
  • code的hash值,先通过controller状态库查询到账户对象,然后将其code的data和size值做sha256哈希得到的值。
  • wasm的数据,就是完整的原始code的数据。
  • abi数据,通过abi_serializer将账户的abi数据解析出来。
代码语言:javascript
复制
read_only::get_code_results read_only::get_code( const get_code_params& params )const {
   get_code_results result;
   result.account_name = params.account_name;
   const auto& d = db.db();
   const auto& accnt  = d.get<account_object,by_name>( params.account_name );// 从controller状态库中获取账户信息
   // 当前默认不支持返回wast数据
   EOS_ASSERT( params.code_as_wasm, unsupported_feature, "Returning WAST from get_code is no longer supported" );

   if( accnt.code.size() ) {
      if (params.code_as_wasm) {
          // 完整的原始账户的code的数据
         result.wasm = string(accnt.code.begin(), accnt.code.end());
      }
      // 获得code的哈希值:将账户信息下的code的data和size值做sha256哈希得到的值
      result.code_hash = fc::sha256::hash( accnt.code.data(), accnt.code.size() );
   }
   // 获取账户的abi数据:通过abi_serializer将账户的abi数据解析出来。
   abi_def abi;
   if( abi_serializer::to_abi(accnt.abi, abi) ) {
      result.abi = std::move(abi);
   }

   return result;
}

6. 获得账户的code哈希值 get_code_hash

实现方法参照get_code,返回数据只包括code的hash值。

7. 获得账户的abi数据 get_abi

实现方法参照get_code,返回数据只包括账户的abi数据。

8. 获得账户的原始code和abi数据 get_raw_code_and_abi

代码语言:javascript
复制
read_only::get_raw_code_and_abi_results read_only::get_raw_code_and_abi( const get_raw_code_and_abi_params& params)const {
   get_raw_code_and_abi_results result;
   result.account_name = params.account_name;

   const auto& d = db.db();
   const auto& accnt = d.get<account_object,by_name>(params.account_name);
   result.wasm = blob{{accnt.code.begin(), accnt.code.end()}}; // 原始wasm值,完整取出即可。
   result.abi = blob{{accnt.abi.begin(), accnt.abi.end()}}; // 原始abi值,完整取出即可。

   return result;
}

9. 获得账户的原始abi数据 get_raw_abi

实现方法参照get_raw_code_and_abi,返回数据只包括账户的原始abi数据。

10. 获得一条状态库表的值 get_table_rows

首先查看该接口的传入参数的数据结构:

代码语言:javascript
复制
struct get_table_rows_params {
  bool        json = false; // 是否是json的格式
  name        code; // 传入code值,即拥有该table的账户名
  string      scope; // 传入scope值,即查询条件
  name        table; // 传入table的名字
  string      table_key; // table主键
  string      lower_bound; // 设置检索数据的下限,默认是first
  string      upper_bound; // 设置检索数据的上限,默认是last
  uint32_t    limit = 10; // 数据结果的最大条目限制
  string      key_type;  // 通过指定键的数据类型,定位查询依赖的键
  string      index_position; // 通过传入键的位置,,定位查询依赖的键。1 - 主键(first), 2 - 二级索引 (multi_index定义), 3 - 三级索引,等等
  string      encode_type{"dec"}; //加密类型,有十进制还是十六进制,默认是十进制dec。
};
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-11-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 eosfans 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、接口列表chain_api_plugin
    • (1) CHAIN_RO_CALL
      • api_handle参数
    • (2) CHAIN_RW_CALL_ASYNC
      • api_handle参数
      • chain_api_plugin生命周期
  • 二、结构体成员序列化FC_REFLECT
  • 三、chain_plugin生命周期
    • chain_plugin::set_program_options
      • chain_plugin::plugin_initialize
        • chain_plugin::plugin_startup
          • chain_plugin::plugin_shutdown
          • 四、RPC接口实现
            • 1. 获取基本信息 get_info
              • 2. 获取区块信息 get_block
                • 3. 获取区块头状态 get_block_header_state
                  • 4. 获取账户信息 get_account
                    • 5. 获取账户code信息 get_code
                      • 6. 获得账户的code哈希值 get_code_hash
                        • 7. 获得账户的abi数据 get_abi
                          • 8. 获得账户的原始code和abi数据 get_raw_code_and_abi
                            • 9. 获得账户的原始abi数据 get_raw_abi
                              • 10. 获得一条状态库表的值 get_table_rows
                              相关产品与服务
                              区块链
                              云链聚未来,协同无边界。腾讯云区块链作为中国领先的区块链服务平台和技术提供商,致力于构建技术、数据、价值、产业互联互通的区块链基础设施,引领区块链底层技术及行业应用创新,助力传统产业转型升级,推动实体经济与数字经济深度融合。
                              领券
                              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档