学习
实践
活动
工具
TVP
写文章
专栏首页素质云笔记用户增长——Cohort Analysis 留存分析(三)

用户增长——Cohort Analysis 留存分析(三)

数据是会骗人的,尤其是平均数据(真实世界会有用户每个月下单2.5次吗?很可能是两个分别下单1次和4次的客户而已),一个中等的平均的用户画像其实完全是用数据创造出来的虚幻的形象。而一个漂亮的平均数所创造出来的这种虚幻景象,往往会给我们的决策造成误导。但是事实上,数据并不会说谎,只是分析数据的人没有做到精准分析而导致对数据呈现的错误解读!因此,Cohort Analysis的分析方法应运而生。

目前该系列的几篇: 用户增长——CLV用户生命周期价值CLTV 笔记(一) 用户增长 - BG/NBD概率模型预测用户生命周期LTV(二) 用户增长——Cohort Analysis 留存分析(三)

参考文章: 用户行为分析利器:同类群组分析 Cohort Analysis:用户在哪一步离开了我们的产品?

文章目录

一、什么是Cohort Analysis?

Cohort其实是一个组群的意思, Cohort Analysis就是分组分析,也可以叫做同期分析。Cohort分析通过对性质完全一样的可对比群体的留存情况的比较,来发现哪些因素影响短、中、长期的留存。Cohort分析受到欢迎的另一个原因是它用起来十分简单,但却十分直观。相较与比较繁琐的损失分析,RFM或者用户聚类等,Cohort只用简单的一个图表,甚至连四则运算都不用,就直接描述了用户在一段时间周期(甚至是整个LTV[2])的留存(或流失)变化情况。

同类群组分析可以回答以下问题:

  • 用户随着时间推移会如何表现?
  • 不同群组之间的行为差异是什么?
  • 自启动新产品/新功能以来,用户行为有何变化?
  • 随着时间推移,留存率(retention rate)如何?
  • 用户多快会使用一项新功能?
  • 客户群中不同组的用户终身价值( customer lifetime value, CLV)是多少?
  • 用户将来的行为会如何?

二、如何做Cohort Analysis?

首先我们了解一下两个概念:维度以及粒度。

维度:如果按用户的新增日期分组,那时间就是维度,如果按新增用户的渠道来源分组,渠道就是维度。

粒度:例如,时间维度是按照月划分、还是按照天划分;新增渠道维度是新增的来源产品还是来源的具体网址,这些都是粒度差异。

分组留存率计算起来比较简单,首先对用户进行分组,先按照维度分,再按照粒度分。通过基于这两方面的分组,可以将对比的差异值逐级锁定,寻找原因。

表1是一个典型的Cohort Analysis表格。该Cohort Analysis按照时间为维度,月份为粒度进行用户分组。

表1:Cohort Analysis表格

表1中,第一列为月份的排列,第二列为对应每个自然月中新增的用户数量。右侧表格即为当月新增的用户数量在后续每个月中的留存情况。那么这个图是怎么看的呢?

首先横向看表。1月份中,公司共有新增用户80个,当月流失用户2个,剩余的78个用户在2月份时又流失了3个,剩余75个用户在3月份时又流失了3个,剩余72个,以此类推,1月份的80个新增用户在11月的留存数量为64个。其他月份也是同样的分析方法,例如,4月份新增的110用户在8月的留存数量为99个。

其次纵向看表。5月份中,当月总下单用户数为477。其中,应该包括1月新增到5月留存的70个、2月新增到5月留存的82个、3月新增到5月留存的103个、4月新增到5月留存的107个以及5月刚刚新增的115个用户。

根据表1中的留存数据量,能够计算得到留存率,进而得到表2。

表2:留存率表

表2中,首先横向看表,能够看出每个月新增用户在后续各月的留存率情况。其次纵向看表,能够看出不同月份新增用户分别在下个月、下下个月等的留存表现如何。

三、Cohort Analysis表格中一家好的公司应有的趋势是什么?

对应表2中横向纵向两方面的分析,一家好的公司应该能够看到如下的趋势:

首先横向的留存数据终会在某个月份之后停留在一个固定的留存率上,比如A月获取的100个用户,在半年后每个月的留存率都稳定在60%,这就说明这60%的用户是稳定留存下来的。否则若留存率一直处在下降的状态,在若干月后将最终归零,即A月的留存客户为0。

其次纵向的留存数据应该是越来越好的。因为若公司和团队应该不断的根据历史情况改进产品和体验等,使得越后面加入的用户,能够享受到越好的产品及服务,从而导致后续月份的留存率越高。

根据Cohort分析我们可以更好的知道一家公司具体的运营情况,而且是分组的有时间延展性的。你可以看到每月的新增用户数量的变化情况,不同月份新增用户在后续每个月的留存情况,每个月的流失率情况等等。如果只看当月的总用户情况,那么上述这些问题都会被掩盖,尤其是新增用户数量大的时候,表面看起来公司用户是在增长,但很可能全都是靠新增用户拉动的。

四、一个案例总结

数据分析——Cohort Analysis(群组分析)

Cohort Analysis又叫队列分析,群组分析,是数据分析中常用的一种方法。Cohort Analysis的一般分析过程是将数据分成相同权重,连续的几个部分,然后对每部分数据做相同分析,最后做连续性讨论并得到结果。

总结:

A公司的的拉新留存工作做的很好,但是有一个问题:随着拉新数量增加,留存率会降低。可能的原因是拉新渠道变多,导致用户的精准程度下降。

可以采取的措施有:

对之前精准的用户渠道加大投放; 针对目标新用户增加新功能;

结论:B公司虽然拉新效果好,但是用户流失非常快,可能原因是产品功能没有做好或者拉新渠道有问题。B公司现在急需解决该问题,如果无法解决该问题,B公司是一家危险的公司。

进阶拓展

Cohort Analysis不单单可以用在用户留存上,支付金额,用户价值等指标都可以通过使用Cohort Analysis进行分析。

本文参与 腾讯云自媒体分享计划 ,欢迎热爱写作的你一起参与!
本文分享自作者个人站点/博客:http://blog.csdn.net/sinat_26917383复制
如有侵权,请联系 cloudcommunity@tencent.com 删除。
登录 后参与评论
0 条评论

相关文章

  • Google Analytics 4 中通过Cohort Analysis做用户留存分析

    这里的变量并不是Google Tag Manager里面的变量,而是指在探索里面设置报告的地方,在这个地方可以设置:

    GA小站
  • 超全图解!用户活跃、留存、增长分析

    增长黑客,是以增长为唯一目标的一群人,他们所做的每一件事情,都会力求会给产品带来持续增长的可能性

    咸鱼学Python
  • 用户活跃、留存、增长分析,超全图解!

    增长黑客,是以增长为唯一目标的一群人,他们所做的每一件事情,都会力求会给产品带来持续增长的可能性

    DataScience
  • 精细化用户增长案例:事件、留存、漏斗分析方法是什么?

    事件分析法的应用领域非常广泛,不同学者从本领域视角对其进行了阐述。事件研究是根据某一事件发生前后的资料统计,采用特定技术测量该事件影响性的一种定量分析方法。

    1480
  • 同期群分析,你可以怎么玩?

    作者:武桐辛 本文长度1888字 ,建议阅读4分钟。 今天iCDO原创团队作者武桐辛从全新视角同期群分析方法切入,实现分析和辅助产品决策,从而迎合用户多元化需求...

    iCDO互联网数据官
  • 『数据分析』使用python进行同期群分析

    五一以迅雷不及掩耳盗铃儿响叮当仁不让之势结束,这不马上又周末了,我们又可以愉快的学习啦,本次节后第一篇来自小小明大哥主笔。

    可以叫我才哥
  • R语言数据分析笔记——Cohort 存留分析

    相信经常做数据分析的同学都听说过Cohort 分析,特别是互联网运营中,用于分析客户存留等场景,以往这种分析大都借助SQL+Excel完成。

    数据小磨坊
  • Workspace中的同类群组表Cohort Table

    Cohort Table、同类群组表,有的也叫同类群组分析,主要用于分析留存情况、但Cohort Table还可以用于分析流失情况。

    GA小站
  • 几何级增长的客户:客户深度运营的13个关键数据模型

    宋星是数据化互联网营销与运营资深的从业者和行业意见领袖,“互联网分析在中国”博客(原“网站分析在中国”)全文作者,新南威尔士大学营销分析行业顾问委员会(UNSW...

    iCDO互联网数据官
  • 互联网运营数据分析必须掌握的十个经典方法

    这篇文章是《互联网运营增长的十个经典模型(2019年版)》的“兄弟篇”,两篇文章一个讲模型,一个讲方法,都是数据化营销与运营领域非常重要的知识内容。

    iCDO互联网数据官
  • 干货|互联网运营数据分析必须掌握的十个经典方法

    ? 眼花缭乱的东西很多,真正派上用场的,却不见得是那些看起来炫酷的。很多方法朴实无华,却解决大量的问题。 下面十个方法都是我这么多年做互联网运营分析时一定会用...

    灯塔大数据
  • 数据运营分析无从下手?给你分享10招!

    很多方法朴实无华,却解决大量的问题。下面十个方法都是我这么多年做分析时一定会用到的最经典的方法。这些方法如果烂熟于心,其实只要掌握分析的最核心部分也就差不多了。...

    1480
  • 干货|互联网运营数据分析的十大经典方法,朴实却能解决问题

    导读 眼花缭乱的东西很多,真正派上用场的,却不见得是那些看起来炫酷的。很多方法朴实无华,却解决大量的问题。 下面十个方法都是我这么多年做互联网运营分析时一定会...

    灯塔大数据
  • 【分析工具】Amplitude——硅谷的数据独角兽和它的用户增长分析解决方案

      这个系列介绍一系列在世界上特别优秀的互联网数据分析和优化工具。可以看出这些工具要么在国内还没有对应的解决方案,要么确实比国内的同样方案要厉害不少。客观看待,...

    iCDO互联网数据官
  • 干货|互联网运营数据分析必须掌握的十个经典方法

    用户1756920
  • SaaS从业者必读:一文读懂如何衡量与优化SaaS公司的关键指标 | 投稿

    要想真正了解和完善一家SaaS公司,你就需要对一些关键指标有深入地了解。相对传统公司而言,SaaS公司要复杂得多。那些能有效驱动传统公司增长的指标在SaaS公司...

    人称T客
  • 练好数据分析基本功,掌握常用的统计学指标和六大分析方法

    前面几讲,我们从数据岗的知识体系出发,学习了常用的SQL语法,复习了统计学的基础知识。今天的分享我们是数据分析岗的最后一讲,着重于分享常用的统计学指标以及数据分...

    数据万花筒
  • 如何理解和预测客户终身价值

    客户终身价值(Customer Lifetime Value, CLTV或LTV)是表明业务整体健康状况和在客户生命周期中留住客户的能力的最重要指标之一。当客户...

    溪歪歪

扫码关注腾讯云开发者

领取腾讯云代金券