本文主要涉及的库有爬虫库requests、词频统计库collections、数据处理库numpy、结巴分词库jieba 、可视化库pyecharts等等。
关于数据方面,这里直接是从新闻平台上进行获取的文本信息,其实这个文本文件可以拓展开来,你可以自定义文本,也可以是报告,商业报告,政治报告等,也可以是新闻平台,也可以是论文,也可以是微博热评,也可以是网易云音乐热评等等,只要涉及到大量文本的,都可月引用本文的代码,进行词频分词、统计、可视化等。
数据获取十分简单,一个简单的爬虫和存储就可以搞定,这里以一篇新闻为例进行演示,代码如下:
import re
import collections # 词频统计库
import numpy as np # numpy数据处理库
import jieba # 结巴分词
import requests
from bs4 import BeautifulSoup
from pyecharts import options as opts
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType
import warnings
warnings.filterwarnings('ignore')
r=requests.get("https://m.thepaper.cn/baijiahao_11694997",timeout=10)
r.encoding="utf-8"
s=BeautifulSoup(r.text,"html.parser")
f=open("报告.txt","w",encoding="utf-8")
L=s.find_all("p")
for c in L:
f.write("{}\n".format(c.text))
f.close()
代码运行之后,在本地会得到一个【报告.txt】文件,文件内容就是网站上的文本信息。如果你想获取其他网站上的文本,需要更改下链接和提取规则。
接下来就是词频统计了,代码如下所示。
# 读取文件
fn = open("./报告.txt","r",encoding="utf-8")
string_data = fn.read()
fn.close()
# 文本预处理
# 定义正则表达式匹配模式
pattern = re.compile(u'\t|,|/|。|\n|\.|-|:|;|\)|\(|\?|"')
string_data = re.sub(pattern,'',string_data) # 将符合模式的字符去除
# 文本分词
# 精确模式分词
seg_list_exact = jieba.cut(string_data,cut_all=False)
object_list = []
# 自定义去除词库
remove_words = [u'的',u'要', u'“',u'”',u'和',u',',u'为',u'是',
'以' u'随着', u'对于', u'对',u'等',u'能',u'都',u'。',
u' ',u'、',u'中',u'在',u'了',u'通常',u'如果',u'我',
u'她',u'(',u')',u'他',u'你',u'?',u'—',u'就',
u'着',u'说',u'上',u'这', u'那',u'有', u'也',
u'什么', u'·', u'将', u'没有', u'到', u'不', u'去']
for word in seg_list_exact:
if word not in remove_words:
object_list.append(word)
# 词频统计
# 对分词做词频统计
word_counts = collections.Counter(object_list)
# 获取前30最高频的词
word_counts_all = word_counts.most_common()
word_counts_top30 = word_counts.most_common(30)
print("2021年政府工作报告一共有%d个词"%len(word_counts))
print(word_counts_top30)
首先读取文本信息,之后对文本进行预处理,提取文字信息,并且可以自定义词库,作为停用词,之后将获取到的词频做词频统计,获取前30最高频的词,并进行打印,输出结果如下图所示。
接下来就是可视化部分了,这里直接上代码,如下所示。
import pyecharts
from pyecharts.charts import Line
from pyecharts import options as opts
# 示例数据
cate = [i[0] for i in word_counts_top30]
data1 = [i[1] for i in word_counts_top30]
line = (Line()
.add_xaxis(cate)
.add_yaxis('词频', data1,
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]))
.set_global_opts(title_opts=opts.TitleOpts(title="词频统计Top30", subtitle=""),
xaxis_opts=opts.AxisOpts(name_rotate=60,axislabel_opts={"rotate":45}))
)
line.render_notebook()
输出结果是一个线图,看上去还不错。
本文基于Python网络爬虫获取到的文本文件,通过词频、分词和可视化等处理,完成一个较为简单的项目,欢迎大家积极尝试。
本文分享自 Python爬虫与数据挖掘 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!