前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >使用 Python 进行数据可视化之Plotly

使用 Python 进行数据可视化之Plotly

作者头像
海拥
发布2021-12-21 09:28:09
2K0
发布2021-12-21 09:28:09
举报
文章被收录于专栏:全栈技术

作者主页:海拥

作者简介:CSDN全栈领域优质创作者、HDZ核心组成员、蝉联C站周榜前十

上一篇文章我们介绍了 Bokeh,接下来让我们继续我们列表的第四个库。这是我们列表中的最后一个库,您可能想知道为什么用Plotly。以下就是它的优点——

  • Potly 具有悬停工具功能,使我们能够检测众多数据点中的任何异常值或异常情况。
  • 它允许更多的定制。
  • 它使图形在视觉上更具吸引力。

安装

要安装它,请在终端中输入以下命令。

代码语言:javascript
复制
pip install plotly

散点图

散点图中Plotly可以使用被创建scatter()plotly.express的方法。和 Seaborn 一样,这里也需要一个额外的数据参数。

例子:

代码语言:javascript
复制
import plotly.express as px
import pandas as pd

# 读取数据库
data = pd.read_csv("tips.csv")

# 绘制散点图
fig = px.scatter(data, x="day", y="tip", color='sex')

# 显示plot
fig.show()

输出:

折线图

Plotly 中的折线图看起来比较直观,并且是 plotly 的杰出合并,它管理各种类型的数据并组装易于样式的统计数据。使用px.line 将每个数据位置表示为一个顶点

例子:

代码语言:javascript
复制
import plotly.express as px
import pandas as pd

# 读取数据库
data = pd.read_csv("tips.csv")

# 绘制散点图
fig = px.line(data, y='tip', color='sex')

# 显示plot
fig.show()

条形图

Plotly 中的条形图可以使用 plotly.express 类的 bar() 方法创建。

例子:

代码语言:javascript
复制
import plotly.express as px
import pandas as pd

# 读取数据库
data = pd.read_csv("tips.csv")

# 绘制散点图
fig = px.bar(data, x='day', y='tip', color='sex')

# 显示情节
fig.show()

输出:

直方图

在plotly,直方图可以使用plotly.express类的histogram()函数创建。

例子:

代码语言:javascript
复制
import plotly.express as px
import pandas as pd

# 读取数据库
data = pd.read_csv("tips.csv")

# 绘制散点图
fig = px.histogram(data, x='total_bill', color='sex')

# 显示 plot
fig.show()

输出:

添加交互

就像 Bokeh 一样,plotly 也提供了各种交互。让我们讨论其中的几个。

创建下拉菜单:下拉菜单是菜单按钮的一部分,始终显示在屏幕上。每个菜单按钮都与一个菜单小部件相关联,该小部件可以在单击该菜单按钮时显示该菜单按钮的选项。在 plotly 中,有 4 种可能的方法可以使用 updatemenu 方法来修改图表。

  • restyle: 修改数据或数据属性
  • relayout: 修改布局属性
  • update: 修改数据和布局属性
  • animate: 开始或暂停动画

例子:

代码语言:javascript
复制
import plotly.graph_objects as px
import pandas as pd

# 读取数据库
data = pd.read_csv("tips.csv")


plot = px.Figure(data=[px.Scatter(
	x=data['day'],
	y=data['tip'],
	mode='markers',)
])

# 添加下拉菜单
plot.update_layout(
	updatemenus=[
		dict(
			buttons=list([
				dict(
					args=["type", "scatter"],
					label="Scatter Plot",
					method="restyle"
				),
				dict(
					args=["type", "bar"],
					label="Bar Chart",
					method="restyle"
				)
			]),
			direction="down",
		),
	]
)

plot.show()

输出:

添加按钮: 在 plotly 中,动作自定义按钮用于直接从记录中快速制作动作。自定义按钮可以添加到 CRM、营销和自定义应用程序中的页面布局。还有 4 种可能的方法可以应用于自定义按钮:

  • restyle: 修改数据或数据属性
  • relayout: 修改布局属性
  • update: 修改数据和布局属性
  • animate: 开始或暂停动画

例子:

代码语言:javascript
复制
import plotly.graph_objects as px
import pandas as pd

# 读取数据库
data = pd.read_csv("tips.csv")


plot = px.Figure(data=[px.Scatter(
	x=data['day'],
	y=data['tip'],
	mode='markers',)
])

# 添加下拉菜单
plot.update_layout(
	updatemenus=[
		dict(
			type="buttons",
			direction="left",
			buttons=list([
				dict(
					args=["type", "scatter"],
					label="Scatter Plot",
					method="restyle"
				),
				dict(
					args=["type", "bar"],
					label="Bar Chart",
					method="restyle"
				)
			]),
		),
	]
)

plot.show()

输出:

创建滑块和选择器:

在 plotly 中,范围滑块是一个自定义范围类型的输入控件。它允许在指定的最小和最大范围之间选择一个值或一个值范围。范围选择器是一种用于选择要在图表中显示的范围的工具。它提供了用于在图表中选择预配置范围的按钮。它还提供了输入框,可以手动输入最小和最大日期

例子:

代码语言:javascript
复制
import plotly.graph_objects as px
import pandas as pd

# 读取数据库
data = pd.read_csv("tips.csv")

plot = px.Figure(data=[px.Scatter(
	y=data['tip'],
	mode='lines',)
])

plot.update_layout(
	xaxis=dict(
		rangeselector=dict(
			buttons=list([
				dict(count=1,
					step="day",
					stepmode="backward"),
			])
		),
		rangeslider=dict(
			visible=True
		),
	)
)

plot.show()

输出:

小结

在本系列教程中,我们借助 Python 的四个不同绘图模块(即 MatplotlibSeabornBokeh 和 Plotly)绘制了tips 数据集。每个模块都以自己独特的方式显示情节,每个模块都有自己的一组功能,例如 Matplotlib 提供了更大的灵活性,但代价是编写更多代码,而 Seaborn 作为一种高级语言提供了允许人们通过少量代码。每个模块都可以根据我们想要完成的任务使用。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021/11/08 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 安装
  • 散点图
  • 折线图
  • 条形图
  • 直方图
  • 添加交互
    • 创建下拉菜单:下拉菜单是菜单按钮的一部分,始终显示在屏幕上。每个菜单按钮都与一个菜单小部件相关联,该小部件可以在单击该菜单按钮时显示该菜单按钮的选项。在 plotly 中,有 4 种可能的方法可以使用 updatemenu 方法来修改图表。
      • 添加按钮: 在 plotly 中,动作自定义按钮用于直接从记录中快速制作动作。自定义按钮可以添加到 CRM、营销和自定义应用程序中的页面布局。还有 4 种可能的方法可以应用于自定义按钮:
        • 创建滑块和选择器:
        • 小结
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档