前言
题目:iSEE: Interactive SummarizedExperiment Explorer 日期:2018-06-14 期刊:F1000Research 链接:https://f1000research.com/articles/7-741 GitHub:https://github.com/iSEE/iSEE
这篇文章虽然发表的比较早,但最近看到其中一个作者Federico Marini和大佬们交流hdf5数据支持的问题,所以还是简单了解一下这个工具吧
他们讨论的结果是
library(zellkonverter)
sce_h5ad <- readH5AD("file_as_anndata.h5ad")
assayNames(sce_h5ad) <- "logcounts"
HDF5Array::saveHDF5SummarizedExperiment(sce_Bcells_h5ad, dir = "see_as_hdf5")
#And to read that in ->
sce_read_in_again <- HDF5Array::loadHDF5SummarizedExperiment("see_as_hdf5")
library(iSEE)
iSEE(sce_read_in_again)
重在数据展示,而非数据分析
它不是单纯为某一个课题设计的网页工具,而只要是SummarizedExperiment
它就可以支持可视化,而我们知道单细胞数据不仅仅是seurat格式,还有很大部分是SummarizedExperiment
。当然,除了单细胞,SummarizedExperiment
在其他领域(比如甲基化)也有涉及,因此这个工具可以无缝衔接支持此格式的R包下游,用来展示rowdata、metadata等。可以说,它最大的亮点就是兼容性和可拓展性
那么它为何对SummarizedExperiment
格式这么偏爱呢?
就像我之前在公众号里介绍的,这个对象可以整合 基因组信息(行)以及样本信息(列),并且可以容纳多种表达量类型(比如raw count、normalized count),甚至后期分析的结果也可以存储(比如降维结果)
还设置了大量的参数调节,比如可以对这个数据的列数据进行选取:
目前提供了一些数据作为示例:
还支持TCGA数据的可视化
作者提供了一些rmd作为参考:https://github.com/iSEE/iSEE_instances
# 上游分析得到sce对象
# Once the processing steps above are done, we can call `iSEE` with the subsampled `SingleCellExperiment` object.
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("iSEE")
# or also...
BiocManager::install("iSEE", dependencies = TRUE)
if (require(iSEE)) {
iSEE(sce)
}