前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Seurat4.0系列教程17:Mixscape

Seurat4.0系列教程17:Mixscape

作者头像
生信技能树jimmy
发布2022-01-10 09:01:33
5350
发布2022-01-10 09:01:33
举报
文章被收录于专栏:单细胞天地

概述

本教程演示了如何使用mixscape 分析 single-cell pooled CRSIPR screens。我们介绍新的seurat功能:

  1. 计算每个细胞的特异性扰动特征。
  2. 识别和去除"逃逸"CRISPR扰动的细胞。
  3. 可视化跨不同扰动的相似性/差异。

加载所需的包

代码语言:javascript
复制
# Load packages.
library(Seurat)
library(SeuratData)
library(ggplot2)
library(patchwork)
library(scales)
library(dplyr)
library(reshape2)

# Download dataset using SeuratData.
InstallData(ds = "thp1.eccite")

# Setup custom theme for plotting.
custom_theme <- theme(
  plot.title = element_text(size=16, hjust = 0.5), 
  legend.key.size = unit(0.7, "cm"), 
  legend.text = element_text(size = 14))

加载包含 ECCITE-seq 数据集的seurat对象

我们使用一个包含111个 gRNA 的ECCITE-seq数据集,该数据集来自受刺激的THP-1细胞,发表在bioRxiv 2020[1]。此数据集可从SeuratData包下载。

代码语言:javascript
复制
# Load object.
eccite <- LoadData(ds = "thp1.eccite")

# Normalize protein.
eccite <- NormalizeData(
  object = eccite, 
  assay = "ADT", 
  normalization.method = "CLR", 
  margin = 2)

基于RNA的聚类是由混淆的变异驱动的

在这里,我们按照标准的Seurat工作流,根据细胞的基因表达特征对细胞进行聚类。我们期望获得特定扰动的亚群,但是我们看到聚类主要由细胞周期和重复的 ID 驱动。只观察到一个特定扰动的群,其中包含表达 IFN-gamma通路的gRNA的细胞。

代码语言:javascript
复制
# Prepare RNA assay for dimensionality reduction: 
# Normalize data, find variable features and scale data.
DefaultAssay(object = eccite) <- 'RNA'
eccite <- NormalizeData(object = eccite) %>% FindVariableFeatures() %>% ScaleData()

# Run Principle Component Analysis (PCA) to reduce the dimensionality of the data.
eccite <- RunPCA(object = eccite)

# Run Uniform Manifold Approximation and Projection (UMAP) to visualize clustering in 2-D.
eccite <- RunUMAP(object = eccite, dims = 1:40)

# Generate plots to check if clustering is driven by biological replicate ID, 
# cell cycle phase or target gene class.
p1 <- DimPlot(
  object = eccite, 
  group.by = 'replicate', 
  label = F, 
  pt.size = 0.2, 
  reduction = "umap", cols = "Dark2", repel = T) +
  scale_color_brewer(palette = "Dark2") +
  ggtitle("Biological Replicate") +
  xlab("UMAP 1") +
  ylab("UMAP 2") +
  custom_theme

p2 <- DimPlot(
  object = eccite, 
  group.by = 'Phase', 
  label = F, pt.size = 0.2, 
  reduction = "umap", repel = T) + 
  ggtitle("Cell Cycle Phase") +
  ylab("UMAP 2") +
  xlab("UMAP 1") +
  custom_theme

p3 <- DimPlot(
  object = eccite, 
  group.by = 'crispr', 
  pt.size = 0.2, 
  reduction = "umap", 
  split.by = "crispr", 
  ncol = 1, 
  cols = c("grey39","goldenrod3")) + 
  ggtitle("Perturbation Status") +
  ylab("UMAP 2") +
  xlab("UMAP 1") +
  custom_theme

# Visualize plots.
((p1 / p2 + plot_layout(guides = 'auto')) | p3 )

计算局部扰动特征可减轻混淆效果

为了计算局部扰动特征,我们设置non-targeting Nearest Neighbors(NNs) 相当于 k=20 的数量,我们建议用户从以下范围选择 k:20 < k < 30。直觉上,用户不希望将 k 设置为非常小或大的数字,因为这很可能不会从数据集中删除技术误差。使用PRTB特征来聚类细胞去除了所有技术误差,并显示一个额外的特定扰动的群。

代码语言:javascript
复制
# Calculate perturbation signature (PRTB).
eccite<- CalcPerturbSig(
  object = eccite, 
  assay = "RNA", 
  slot = "data", 
  gd.class ="gene", 
  nt.cell.class = "NT", 
  reduction = "pca", 
  ndims = 40, 
  num.neighbors = 20, 
  split.by = "replicate", 
  new.assay.name = "PRTB")

# Prepare PRTB assay for dimensionality reduction: 
# Normalize data, find variable features and center data.
DefaultAssay(object = eccite) <- 'PRTB'

# Use variable features from RNA assay.
VariableFeatures(object = eccite) <- VariableFeatures(object = eccite[["RNA"]])
eccite <- ScaleData(object = eccite, do.scale = F, do.center = T)

# Run PCA to reduce the dimensionality of the data.
eccite <- RunPCA(object = eccite, reduction.key = 'prtbpca', reduction.name = 'prtbpca')

# Run UMAP to visualize clustering in 2-D.
eccite <- RunUMAP(
  object = eccite, 
  dims = 1:40, 
  reduction = 'prtbpca', 
  reduction.key = 'prtbumap', 
  reduction.name = 'prtbumap')

# Generate plots to check if clustering is driven by biological replicate ID, 
# cell cycle phase or target gene class.
q1 <- DimPlot(
  object = eccite, 
  group.by = 'replicate', 
  reduction = 'prtbumap', 
  pt.size = 0.2, cols = "Dark2", label = F, repel = T) +
  scale_color_brewer(palette = "Dark2") +
  ggtitle("Biological Replicate") +
  ylab("UMAP 2") +
  xlab("UMAP 1") +
  custom_theme

q2 <- DimPlot(
  object = eccite, 
  group.by = 'Phase', 
  reduction = 'prtbumap', 
  pt.size = 0.2, label = F, repel = T) +
  ggtitle("Cell Cycle Phase") +
  ylab("UMAP 2") +
  xlab("UMAP 1") + 
  custom_theme

q3 <- DimPlot(
  object = eccite,
  group.by = 'crispr',
  reduction = 'prtbumap', 
  split.by = "crispr", 
  ncol = 1, 
  pt.size = 0.2, 
  cols = c("grey39","goldenrod3")) +
  ggtitle("Perturbation Status") +
  ylab("UMAP 2") +
  xlab("UMAP 1") +
  custom_theme

# Visualize plots.
(q1 / q2 + plot_layout(guides = 'auto') | q3)

Mixscape 识别没有检测到扰动的细胞

在这里,我们假设每个目标基因类是两个高斯分布的混合物,一个代表敲除(KO),另一个代表非扰动(NP)细胞。我们进一步假设 NP 细胞的分布与表示非靶向 gRNA (NT) 的细胞的分布相同,我们尝试使用Mixscape 包中的normalmixEM()功能来估计 KO 细胞的分布。接下来,我们计算细胞属于KO分布的概率,并将概率高于0.5的细胞归类为KO。应用此方法,我们识别出 11 个目标基因类别中的 KOs,并检测每个类别中 gRNA 靶向效率的变化。

代码语言:javascript
复制
# Run mixscape.
eccite <- RunMixscape(
  object = eccite, 
  assay = "PRTB", 
  slot = "scale.data", 
  labels = "gene", 
  nt.class.name = "NT", 
  min.de.genes = 5, 
  iter.num = 10, 
  de.assay = "RNA", 
  verbose = F,
  prtb.type = "KO")

# Calculate percentage of KO cells for all target gene classes.
df <- prop.table(table(eccite$mixscape_class.global, eccite$NT),2)

df2 <- reshape2::melt(df)
df2$Var2 <- as.character(df2$Var2)
test <- df2[which(df2$Var1 == "KO"),]
test <- test[order(test$value, decreasing = T),]
new.levels <- test$Var2
df2$Var2 <- factor(df2$Var2, levels = new.levels )
df2$Var1 <- factor(df2$Var1, levels = c("NT", "NP", "KO"))
df2$gene <- sapply(as.character(df2$Var2), function(x) strsplit(x, split = "g")[[1]][1])
df2$guide_number <- sapply(as.character(df2$Var2), 
                           function(x) strsplit(x, split = "g")[[1]][2])
df3 <- df2[-c(which(df2$gene == "NT")),]

p1 <- ggplot(df3, aes(x = guide_number, y = value*100, fill= Var1)) +
  geom_bar(stat= "identity") +
  theme_classic()+
  scale_fill_manual(values = c("grey49", "grey79","coral1")) + 
  ylab("% of cells") +
  xlab("sgRNA")

p1 + theme(axis.text.x = element_text(size = 18, hjust = 1), 
           axis.text.y = element_text(size = 18), 
           axis.title = element_text(size = 16), 
           strip.text = element_text(size=16, face = "bold")) + 
  facet_wrap(vars(gene),ncol = 5, scales = "free") +
  labs(fill = "mixscape class") +theme(legend.title = element_text(size = 14),
          legend.text = element_text(size = 12))

检查mixscape结果

为了确保mixscape为细胞分配正确的扰动状态,我们可以使用下面的功能来查看目标基因类别(例如 IFNGR2)中细胞的扰动分数分布和概率,并将其与 NT 细胞的概率进行比较。此外,我们可以进行差异表达 (DE) 分析,并表明只有 IFNGR2 基因KO 的细胞降低了 IFNG 通路的表达。最后,作为一项独立的检查,我们可以查看 NP 和 KO 细胞中的 PD-L1 蛋白质表达值,寻找已知的调节 PD-L1的 目标基因。

代码语言:javascript
复制
# Explore the perturbation scores of cells.
PlotPerturbScore(object = eccite, 
                 target.gene.ident = "IFNGR2", 
                 group.by = "mixscape_class", 
                 col = "coral2") +labs(fill = "mixscape class")
代码语言:javascript
复制
# Inspect the posterior probability values in NP and KO cells.
VlnPlot(eccite, "mixscape_class_p_ko", idents = c("NT", "IFNGR2 KO", "IFNGR2 NP")) +
  theme(axis.text.x = element_text(angle = 0, hjust = 0.5),axis.text = element_text(size = 16) ,plot.title = element_text(size = 20)) + 
  NoLegend() +
  ggtitle("mixscape posterior probabilities")
代码语言:javascript
复制
# Run DE analysis and visualize results on a heatmap ordering cells by their posterior 
# probability values.
Idents(object = eccite) <- "gene"
MixscapeHeatmap(object = eccite, 
                ident.1 = "NT", 
                ident.2 = "IFNGR2", 
                balanced = F, 
                assay = "RNA", 
                max.genes = 20, angle = 0, 
                group.by = "mixscape_class", 
                max.cells.group = 300, 
                size=6.5) + NoLegend() +theme(axis.text.y = element_text(size = 16))
代码语言:javascript
复制
# Show that only IFNG pathway KO cells have a reduction in PD-L1 protein expression.
VlnPlot(
  object = eccite, 
  features = "adt_PDL1", 
  idents = c("NT","JAK2","STAT1","IFNGR1","IFNGR2", "IRF1"), 
  group.by = "gene", 
  pt.size = 0.2, 
  sort = T, 
  split.by = "mixscape_class.global", 
  cols = c("coral3","grey79","grey39")) +
  ggtitle("PD-L1 protein") +
  theme(axis.text.x = element_text(angle = 0, hjust = 0.5), plot.title = element_text(size = 20), axis.text = element_text(size = 16))

通过线性判别分析(LDA)可视化扰动响应

我们使用 LDA 作为一种降维方法来可视化特定扰动的集群。LDA正试图利用基因表达和标签作为输入,最大限度地提高已知标记(mixscape类别)的可分离性。

代码语言:javascript
复制
# Remove non-perturbed cells and run LDA to reduce the dimensionality of the data.
Idents(eccite) <- "mixscape_class.global"
sub <- subset(eccite, idents = c("KO", "NT"))

# Run LDA.
sub <- MixscapeLDA(
  object = sub, 
  assay = "RNA", 
  pc.assay = "PRTB", 
  labels = "gene", 
  nt.label = "NT", 
  npcs = 10, 
  logfc.threshold = 0.25, 
  verbose = F)

# Use LDA results to run UMAP and visualize cells on 2-D. 
# Here, we note that the number of the dimensions to be used is equal to the number of 
# labels minus one (to account for NT cells).
sub <- RunUMAP(
  object = sub,
  dims = 1:11,
  reduction = 'lda',
  reduction.key = 'ldaumap',
  reduction.name = 'ldaumap')

# Visualize UMAP clustering results.
Idents(sub) <- "mixscape_class"
sub$mixscape_class <- as.factor(sub$mixscape_class)

# Set colors for each perturbation.
col = setNames(object = hue_pal()(12),nm = levels(sub$mixscape_class))
names(col) <- c(names(col)[1:7], "NT", names(col)[9:12])
col[8] <- "grey39"

p <- DimPlot(object = sub, 
             reduction = "ldaumap", 
             repel = T, 
             label.size = 5, 
             label = T, 
             cols = col) + NoLegend()

p2 <- p+ 
  scale_color_manual(values=col, drop=FALSE) + 
  ylab("UMAP 2") +
  xlab("UMAP 1") +
  custom_theme
p2

文中链接

[1]2020: https://www.biorxiv.org/content/10.1101/2020.06.28.175596v1

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-07-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 单细胞天地 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 概述
  • 加载所需的包
  • 加载包含 ECCITE-seq 数据集的seurat对象
  • 基于RNA的聚类是由混淆的变异驱动的
  • 计算局部扰动特征可减轻混淆效果
  • Mixscape 识别没有检测到扰动的细胞
  • 检查mixscape结果
  • 通过线性判别分析(LDA)可视化扰动响应
    • 文中链接
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档