前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度学习目标检测在实际场景中的应用(附源代码)

深度学习目标检测在实际场景中的应用(附源代码)

作者头像
计算机视觉研究院
发布2022-03-04 12:12:14
9240
发布2022-03-04 12:12:14
举报
文章被收录于专栏:计算机视觉战队

关注并星标

从此不迷路

计算机视觉研究院

公众号IDComputerVisionGzq

学习群扫码在主页获取加入方式

计算机视觉研究院专栏

作者:Edison_G

目标检测是现在最热门的研究课题,目前最流行的还是Yolo系列框架,最近我们计算机视觉研究院也分享了很对目标检测干活及实践,都是Yolo-Base框架,今天我们分享一个经过修改后的Yolov5,实时检测的效果!

开源代码:https://github.com/ultralytics/yolov5/releases

01

前言

目标检测是现在最热门的研究课题,现在的框架越来越多,但是技术的新颖性到了瓶颈,目前开始流行Transformer机制,而且在目标检测领域也能获得较大的提升,也是目前研究的一个热点。

即将举行的亚运会,将会投入更多的先进科技,比如3D成像、姿态估计、目标检测、跟踪及识别!让去全世界看到不一样的中国,不一样的科技,不一样的亚运会。今天我们就说说目标检测会在亚运会中的体现!

目前最流行的还是Yolo系列框架,最近我们“计算机视觉研究院”也分享了很对目标检测干活及实践,都是Yolo-Base框架。

02

新框架改进

今天我们分享一个经过简单优化过的Yolov5,暂时命名为:Pad-YoloV5,在IPad上可以实时检测!基于YoloV5框架,熟悉的同学应该都不用多加解释。

YoloV4在YoloV3的基础上增加了近两年的研究成果,如下:

  1. 输入端采用mosaic数据增强
  2. Backbone上采用了CSPDarknet53、Mish激活函数、Dropblock等方式。(cspnet减少了计算量的同时可以保证准确率)
  3. Mish函数为:
  1. Neck中采用了SPP、FPN+PAN的结构,
  2. 输出端则采用CIOU_Loss、DIOU_nms操作

YoloV5主要的改变,如下:

  1. 输入端:Mosaic数据增强、自适应锚框计算
  2. Backbone:Focus结构,CSP结构
  3. Neck:FPN+PAN结构
  4. Prediction:GIOU_Loss

这次主要优化,是YoloV5在数据增强的时候,用随机缩放、随机裁剪、随机排布的方式进行拼接,这个对于小目标的检测效果还是很友好的。通过实验发现,这个随机拼接和有规律的拼接,最终的结果还是有一点差别的。

首先我通过修改数据增强的策略,开始对整体数据集进行统计(也就是数据预处理分析),我大致分成三个范围。将最大的与最小的进行随机拼接,最终结果确实比整体随机的效果好!

其次,稍微修改了下自适应图片缩放策略,Yolov5代码中datasets.py的letterbox函数中进行了修改,对原始图像自适应的添加最少的黑边。我是在自适应缩放后的图片,我在右下角位置填边,其实大多数数据没有什么变化,只是随便改改,因为在线都是在Yolo的基础上增加最近几年新出的策略,确实在最后的检查有一定效果的增加。最后的修改,就是辛苦的把Transformer机制加进了YoloV5的基础框架中,训练确实加快了,但是对于用笔记本训练的成果物,还是不够明显。这也是最近第一次分享实践过程的一些小心思,具体的细节我们“计算机视觉研究院”后期会通过一篇干活详细和大家分享!

© THE END 

转载请联系本公众号获得授权

计算机视觉研究院学习群等你加入!

计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

扫码关注

计算机视觉研究院

公众号ID|ComputerVisionGzq

学习群|扫码在主页获取加入方式

 往期推荐 

🔗

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-02-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 计算机视觉战队 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档