首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >以图搜图:Python实现dHash算法

以图搜图:Python实现dHash算法

作者头像
机器学习AI算法工程
发布2022-03-04 13:40:17
发布2022-03-04 13:40:17
1.7K0
举报

向AI转型的程序员都关注了这个号👇👇👇

机器学习AI算法工程   公众号:datayx

期研究了一下以图搜图这个炫酷的东西。百度和谷歌都有提供以图搜图的功能,有兴趣可以找一下。当然,不是很深入。深入的话,得运用到深度学习这货。Python深度学习当然不在话下。

这个功能最核心的东西就是怎么让电脑识别图片。

这个问题也是困扰了我,在偶然的机会,看到哈希感知算法。这个分两种,一种是基本的均值哈希感知算法(dHash),一种是余弦变换哈希感知算法(pHash)。dHash是我自己命名的,为了和pHash区分。这里两种方法,我都用Python实现了^_^

哈希感知算法基本原理如下:

1、把图片转成一个可识别的字符串,这个字符串也叫哈希值

2、和其他图片匹配字符串

算法不是耍耍嘴皮子就行了,重点是怎么把图片变成一个可识别的字符串。(鄙视网上那些抄来抄去的文章,连字都一模一样)拿一张图片举例。

首先,把这个图片缩小到8x8大小,并改成灰度模式。这样是为了模糊化处理图片,并减少计算量。

8x8的图片太小了,放大图片给大家看一下。

x8大小的图片就是有64个像素值。计算这64个像素的平均值,进一步降噪处理。

像素值=[

     247, 245, 250, 253, 251, 244, 240, 240, 

     247, 253, 228, 208, 213, 243, 247, 241, 

     252, 226, 97, 80, 88, 116, 231, 247, 

     255, 172, 79, 65, 51, 58, 191, 255, 

     255, 168, 71, 60, 53, 69, 205, 255, 

     255, 211, 65, 58, 56, 104, 244, 252, 

     248, 253, 119, 42, 53, 181, 252, 243, 

     244, 240, 218, 175, 185, 230, 242, 244]

平均值=185.359375

得到这个平均值之后,再和每个像素对比。像素值大于平均值的标记成1,小于或等于平均值的标记成0。组成64个数字的字符串(看起来也是一串二进制的)。

降噪结果=[

       1, 1, 1, 1, 1, 1, 1, 1, 

       1, 1, 1, 1, 1, 1, 1, 1, 

       1, 1, 0, 0, 0, 0, 1, 1, 

       1, 0, 0, 0, 0, 0, 1, 1, 

       1, 0, 0, 0, 0, 0, 1, 1, 

       1, 1, 0, 0, 0, 0, 1, 1, 

       1, 1, 0, 0, 0, 0, 1, 1, 

       1, 1, 1, 0, 0, 1, 1, 1]

64位字符串 =

'1111111111111111110000111000001110000011110000111100001111100111'

由于64位太长,比较起来也麻烦。每4个字符为1组,由2进制转成16进制。这样就剩下一个长度为16的字符串。这个字符串也就是这个图片可识别的哈希值。

哈希值 = 'ffffc38383c3c3e7'

Python代码如下:

看看其他图片的哈希值:

这3张图片的哈希值分别和a.jpg(举例的那张图片)的哈希值对比。对比方法用汉明距离:相同位置上的字符不同的个数。例如a.jpg和b.jpg对比

有11个位置的字符不一样,则汉明距离是11。汉明距离越小就说明图片越相识。超过10就说明图片很不一样。

a.jpg和c.jpg的汉明距离是8;

a.jpg和d.jpg的汉明距离是7。

说明在这3张图片中,d.jpg和a.jpg最相似。

大致算法就是这样,汉明距离的代码我没给出,这个比较简单。一般都是在数据库里面进行计算,得到比较小的那些图片感知哈希值。

当然,实际应用中很少用这种算法,因为这种算法比较敏感。同一张图片旋转一定角度或者变形一下,那个哈希值差别就很大。不过,它的计算速度是最快的,通常可以用于查找缩略图。

现有3张图片,用前面的dHash均值哈希感知算法计算哈希值。

Hash均值哈希感知算法计算结果:

1.jpg:270f078fd1fdffff

2.jpg:f8f0e1f0eaefcfff

3.jpg:e70f058f81f1f1ff

1.jpg和2.jpg(旋转90度)的汉明距离是13;1.jpg和3.jpg(旋转5度)的汉明距离是5。(汉明距离是两个字符串对应位置对比,总共不同的个数)

很明显,旋转了90度汉明距离变得很大。在dHash算法中,它们是不同的。而我们肉眼可以看出其实是一样的。前面说过dHash算法比较较真、比较敏感。若要处理一定程度的变形,得要调整一下这个算法。

pHash算法就是基于dHash算法调整而来的,用第一次计算得到的值进行余弦变换。所以命名为余弦哈希感知算法。它可以识别变形程度在25%以内的图片。

大致原理和处理过程是这样:

把图片缩小到32x32的尺寸,并转为灰度模式。

得到这个平均值之后,再和每个像素对比。像素值大于平均值的标记成1,小于或等于平均值的标记成0。组成64个数字的字符串(看起来也是一串二进制的)。

降噪结果 = [

    0, 1, 1, 1, 0, 0, 1, 1,

    0, 1, 1, 0, 0, 0, 0, 1,

    0, 0, 0, 0, 0, 0, 0, 0,

    0, 0, 0, 0, 0, 0, 0, 0,

    1, 1, 1, 1, 1, 1, 1, 1,

    1, 1, 1, 1, 1, 1, 1, 1,

    0, 0, 0, 1, 1, 1, 0, 0,

    0, 0, 0, 0, 0, 0, 0, 0]

64位字符串 = '0111001101100001000000000000000011111111111111110001110000000000'

每4个数字,由2进制转成16进制,得到哈希值 = '73610000ffff1c00'

Python代码如下:

用这个算法计算2.jpg和3.jpg的哈希值和与1.jpg对比的汉明距离分别是:

2.jpg:7ffc0000ffffe000,汉明距离是5

3.jpg:7fff0000fffff800,汉明距离是5

很明显,pHash算法得到的汉明距离更加符合我们的要求。

原文地址

https://yshblog.com/blog/44

机器学习算法AI大数据技术

 搜索公众号添加: datanlp

长按图片,识别二维码


阅读过本文的人还看了以下文章:

TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

《深度学习:基于Keras的Python实践》PDF和代码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字

同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目

特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿

蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-02-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习AI算法工程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档