前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >关于深度学习系列笔记十一(关于卷积神经网络说明)

关于深度学习系列笔记十一(关于卷积神经网络说明)

作者头像
python与大数据分析
发布2022-03-11 13:35:22
3590
发布2022-03-11 13:35:22
举报
文章被收录于专栏:python与大数据分析

关于卷积神经网络笔记,并非拖延症犯了,一方面是出差几天把学习规律打乱了,一方面是知识到了一定程度需要总结,哪怕是书本上的也要确保理解,同时也翻阅了另一本深度学习入门的书籍进行印证。

笔记十的案例,仅仅添加了两层卷积层就比纯全连接层的识别率提升了1.5%,从而达到了99.3%的识别率,为什么呢?

密集连接层和卷积层的根本区别在于,Dense 层从输入特征空间中学到的是全局模式(比如对于MNIST 数字,全局模式就是涉及所有像素的模式);而卷积层学到的是局部模式,对于图像来说,学到的就是在输入图像的二维小窗口中发现的模式。

全连接层存在什么问题呢?那就是数据的形状被“忽视”了。比如,输入数据是图像时,图像通常是高、长、通道方向上的3 维形状。但是,向全连接层输入时,需要将3 维数据拉平为1 维数据。实际上,前面提到的使用了MNIST数据集的例子中,输入图像就是1 通道、高28 像素、长28 像素的(1, 28, 28)形状,但却被排成1 列,以784 个数据的形式输入到最开始的层。

图像是3 维形状,这个形状中应该含有重要的空间信息。比如,空间上邻近的像素为相似的值、RBG的各个通道之间分别有密切的关联性、相距较远的像素之间没有什么关联等,3 维形状中可能隐藏有值得提取的本质模式。但是,因为全连接层会忽视形状,将全部的输入数据作为相同的神经元(同一维度的神经元)处理,所以无法利用与形状相关的信息。

而卷积层可以保持形状不变。当输入数据是图像时,卷积层会以3 维数据的形式接收输入数据,并同样以3 维数据的形式输出至下一层。因此,在CNN中,可以(有可能)正确理解图像等具有形状的数据。

卷积神经网络学到的模式具有平移不变性(translation invariant)。卷积神经网络在图像右下角学到某个模式之后,它可以在任何地方识别这个模式,比如左上角。对于密集连接网络来说,如果模式出现在新的位置,它只能重新学习这个模式。这使得卷积神经网络在处理图像时可以高效利用数据(因为视觉世界从根本上具有平移不变性),它只需要更少的训练样本就可以学到具有泛化能力的数据表示。

卷积神经网络可以学到模式的空间层次结构(spatial hierarchies of patterns),第一个卷积层将学习较小的局部模式(比如边缘),第二个卷积层将学习由第一层特征组成的更大的模式,以此类推。这使得卷积神经网络可以有效地学习越来越复杂、越来越抽象的视觉概念.

关于全连接层的代码、summary输出、模型可视化输出,以及关于神经元权重个数的算法。

关于卷积层和全连接层的代码、summary输出、模型可视化输出,以及关于神经元权重个数的算法。

关于卷积的工作原理:

在3D 输入特征图上滑动(slide)这些3×3 的窗口,在每个可能的位置停止并提取周围特征的3D 图块[形状为(window_height, window_width, input_depth)]。然后每个3D 图块与学到的同一个权重矩阵[叫作卷积核(convolution kernel)]做张量积,转换成形状为(output_depth,) 的1D 向量。然后对所有这些向量进行空间重组,使其转换为形状为(height, width, output_depth) 的3D 输出特征图。输出特征图中的每个空间位置都对应于输入特征图中的相同位置(比如输出的右下角包含了输入右下角的信息)。举个例子,利用3×3 的窗口,向量output[i, j, :] 来自3D 图块input[i-1:i+1,j-1:j+1, :]

关于mnist手写识别卷积和池化的步骤解析,此处未考虑通道数,加通道数就是多维的了,也未考虑填充和步幅,只是简单描述了一下卷积和池化过程。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-05-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 python与大数据分析 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档