前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Python基于粒子群优化的投资组合优化研究

Python基于粒子群优化的投资组合优化研究

作者头像
拓端
发布于 2022-03-11 12:54:24
发布于 2022-03-11 12:54:24
97700
代码可运行
举报
文章被收录于专栏:拓端tecdat拓端tecdat
运行总次数:0
代码可运行

原文链接:http://tecdat.cn/?p=6811

我今年的研究课题是使用粒子群优化(PSO)的货币进位交易组合优化。在本文中,我将介绍投资组合优化并解释其重要性。其次,我将演示粒子群优化如何应用于投资组合优化。第三,我将解释套利交易组合,然后总结我的研究结果。


组合优化

投资组合包括资产和投资资本。投资组合优化涉及决定每项资产应投入多少资金。随着诸如多样化要求,最小和最大资产敞口,交易成本和外汇成本等限制因素的引入,我使用粒子群优化(PSO)算法。

投资组合优化的工作原理是预测投资组合中每种资产的预期风险和收益。该算法接受这些预测作为输入,并确定应在每个资产中投入多少资本,以使投资组合的风险调整收益最大化并满足约束。每种资产的预期风险和收益的预测需要尽可能准确,以使算法表现良好。存在各种方法,在本研究中,我研究了三种常用的方法。

  1. 正态分布式收益- 在此方法中,创建历史资产值的分布并随机抽样以获得每个资产的未来值。该方法假设历史和未来值是正态分布的。
  2. 收益遵循布朗运动 - 在这种方法中,随着时间的推移生成每个资产的随机游走,表示每日收益。由此计算出投资组合的总体收益。这种方法假设未来的收益遵循随机游走。
  3. 收益遵循几何布朗运动 - 在这种方法中,再次生成随机游走,但根据每日方差和长期市场漂移进行标准化。该方法假设未来的收益遵循标准化的随机游走。

在我的研究中,我发现第三种方法是最准确的


粒子群优化(PSO)

在PSO中,群中的每个粒子表示为向量。在投资组合优化的背景下,这是一个权重向量,表示每个资产的分配资本。矢量转换为多维搜索空间中的位置。每个粒子也会记住它最好的历史位置。对于PSO的每次迭代,找到全局最优位置。这是群体中最好的最优位置。一旦找到全局最优位置,每个粒子都会更接近其局部最优位置和全局最优位置。当在多次迭代中执行时,该过程产生一个解决该问题的良好解决方案,因为粒子会聚在近似最优解上。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
 # 此类包含群中的粒子代码
class Particle:
    velocity = []
    pos = []
    pBest = []
 
    def __init__(self):
        for i in range(dimension):
            self.pos.append(random.random())
            self.velocity.append(0.01 * random.random())
            self.pBest.append(self.pos[i])
        return 
该图描绘了粒子群优化算法相对于全局最优(蓝色)和局部最优位置(红色)如何更新群体中每个粒子的位置。
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 此类包含粒子群优化算法类粒子参数优化器
class ParticleSwarmOptimizer:
    solution = []
    swarm = []
 
    def __init__(self):
        for h in range(swarmSize):
            particle = Particle()
            self.swarm.append(particle)

PSO的表现受到权重的影响。探索描述了PSO探索搜索空间不同区域的能力。Exploitation描述了PSO将搜索集中在搜索空间的有前途区域的能力。为了增强PSO的探索和开发能力,应用了以下算法增强功能:

  • 聚合粒子的随机重新初始化 - 通过在粒子聚集在全局最优粒子上时重新启动粒子来改进探索。使用两个粒子(载体)之间的相似性函数测量收敛。

如果粒子在全局最优粒子附近会聚,但不如全局最优粒子合适,则在搜索空间的某处随机重新初始化。这提高了PSO的探索能力。

  • 最优粒子的选择性突变 - 通过初始化邻近全局最优粒子的邻居来改进。如果邻居比全局最优粒子更好,则全局最优粒子被邻居取代。

对于算法的每次迭代,在全局最优粒子附近创建邻居。如果这些邻居中的任何一个优于全局最优粒子,则替换全局最优粒子。


使用粒子群优化的投资组合优化

PSO算法可用于优化投资组合。在投资组合优化的背景下,群中的每个粒子代表投资组合中资产之间的潜在资本分配。这些投资组合的相对适应性可以使用许多平衡风险和预期收益的金融效用函数之一来确定。我使用夏普比率,因为这已成为行业认可的基准投资组合表现标准。考虑以下适用于由三个资产组成的投资组合的PSO图示,

使用粒子群优化(PSO)的投资组合优化的例证。灰色粒子正在更新。红色粒子是灰色粒子的局部最优位置,蓝色粒子是全局最优位置。

灰色粒子转换为向量(0.5,0.2,0.3),意味着投资组合资本的50%分配给资产1,20%分配给资产2,30%分配给资产3。该分配的预期夏普比率为0.38,小于局部最优位置(红色粒子)和全局最优位置(蓝色粒子)。这样,灰色粒子的位置被更新,使得它更接近全局最优粒子和局部最优粒子。

使用粒子群优化(PSO)的投资组合优化的例证。灰色粒子被更新,使其更接近全局最优,并且是局部最优的。得到的矢量比以前更好。

灰色粒子已移动,现在转换为矢量(0.3,0.3,0.4),其预期夏普比率为0.48。该值高于之前的局部最优位置,因此局部最优位置(红色粒子)将更新为当前位置。

使用粒子群优化(PSO)的投资组合优化的例证。局部最优位置(红色粒子)现已更新为粒子的当前位置。

使用粒子群优化的真正挑战是确保满足投资组合优化的约束。如前所述,存在许多限制。最常见的限制因素首先是资产之间不再分配和不少于100%的可用资本(即权重向量必须加起来为1.0)。其次,不允许对资产进行负分配。最后,资本应该分配给投资组合中至少这么多资产。后者是基数约束。两种常用技术用于确保粒子满足约束条件,

  1. 修复不满足约束的粒子 - 对于不满足约束的每个粒子,应用一组规则来改变粒子的位置。
  2. 惩罚不满足约束的粒子的适应性 - 对于不满足约束的每个粒子,惩罚该粒子的夏普比率。

套利交易组合组合

对于我的研究,我将这种技术应用于套利交易组合。套利交易组合包括多个套利交易。套利交易是一种交易策略,其中交易者卖出利率相对较低的货币,并使用这些资金购买不同的货币,从而产生更高的利率。使用此策略的交易者试图找到称为利率差异的利率之间的差异。


通过使多种货币的投资多样化,可以减轻外汇损失的风险,但不能消除。因此,套利交易的投资组合本身风险低于个别套利交易。在套利交易投资组合的背景下,投资组合优化的目标是进一步降低外汇损失的风险,同时提高投资组合实现的投资收益。

投资组合优化的目标是确定应为每笔交易分配多少资金以优化风险调整收益。

在我的研究中,我使用粒子群优化算法来确定一组套利交易之间的投资资本的最优分配。我的研究中的套利交易投资组合包括22种不同的货币。货币包括澳元,加拿大元,瑞士法郎,人民币等。

非常感谢您阅读本文,有任何问题请在下面留言!

本文摘选Python基于粒子群优化的投资组合优化研究》

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-02-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 拓端数据部落 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
一文搞懂什么是粒子群优化算法(Particle Swarm Optimization,PSO)【附应用举例】「建议收藏」
本文来源:https://blog.csdn.net/qq_44186838/article/details/109181453
全栈程序员站长
2022/11/07
9.5K1
一文搞懂什么是粒子群优化算法(Particle Swarm Optimization,PSO)【附应用举例】「建议收藏」
《C 语言赋能:粒子群优化神经网络训练之路》
在人工智能的璀璨星空中,神经网络无疑是一颗耀眼的巨星,而其训练过程则是决定其性能优劣的关键环节。粒子群优化算法(PSO)作为一种强大的智能优化算法,与 C 语言的高效特性相结合,为神经网络训练开辟了新的优化途径。今天,就让我们一同探索如何借助 C 语言实现粒子群优化算法用于神经网络训练,开启智能优化与神经网络融合的奇妙之旅。
程序员阿伟
2024/12/14
820
《C 语言赋能:粒子群优化神经网络训练之路》
粒子群优化算法(PSO)
粒子群算法的发展过程。粒子群优化算法(Partical Swarm Optimization PSO),粒子群中的每一个粒子都代表一个问题的可能解,通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。由于PSO操作简单、收敛速度快,因此在函数优化、 图像处理、大地测量等众多领域都得到了广泛的应用。 随着应用范围的扩大,PSO算法存在早熟收敛、维数灾难、易于陷入局部极值等问题需要解决,主要有以下几种发展方向。
全栈程序员站长
2022/06/28
6890
粒子群优化算法(PSO)
python粒子群算法的实现「建议收藏」
大家好,又见面了,我是你们的朋友全栈君。 参考博客: http://blog.csdn.net/zuochao_2013/article/details/53431767?ref=myread htt
全栈程序员站长
2022/08/24
4910
python粒子群算法的实现「建议收藏」
pso粒子群优化算法_粒子群算法优化神经网络
粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。
全栈程序员站长
2022/09/27
7570
用粒子群优化算法求解旅行商问题
粒子群优化算法采用一种人工智能的形式来解决问题。这种算法对于求解那些使用了多个连续变化的值的函数来说,尤为有效。这篇文章将会介绍如何修改粒子群算法,以使用离散固定值来解决诸如旅行商(TSP,Travelling Salesman Problem)这样的问题。
StoneDemo
2018/01/29
3K0
用粒子群优化算法求解旅行商问题
粒子群优化算法python程序_粒子群算法的具体应用
粒子群优化算法(Particle Swarm Optimization, PSO)作为进化计算的一个分支,是由Eberhart和Kennedy于1995年提出的一种全局搜索算法,同时它也是一种模拟自然界的生物活动以及群体智能的随即搜索算法。 粒子群优化算法起源于鸟群觅食的过程,一个核心机制是每只小鸟各自觅食,并记住一个离食物最近的位置,通过和其他的小鸟交流,得到整个鸟群已知的最佳位置,引导鸟群朝着这个方向继续搜索。 还有两个关键设置:粒子历史最优位置(pBest向量)、群体历史最优位置(gBest向量)。 这里pBest向量是一组向量,它包含了每个粒子的历史最优位置,gBest向量为pBest向量中适应值最高的向量,即全局最优。 说明:算法中一般取要优化的目标函数作为适应值函数,评估适应值的大小,然后更新pBest向量和gBest向量。
全栈程序员站长
2022/11/07
8920
粒子群优化算法python程序_粒子群算法的具体应用
标准粒子群算法(PSO)及其Matlab程序和常见改进算法_粒子群算法应用实例
粒子群优化(Particle Swarm Optimization, PSO)算法是Kennedy和Eberhart受人工生命研究结果的启发、通过模拟鸟群觅食过程中的迁徙和群聚行为而提出的一种基于群体智能的全局随机搜索算法,自然界中各种生物体均具有一定的群体行为,而人工生命的主要研究领域之一是探索自然界生物的群体行为,从而在计算机上构建其群体模型。自然界中的鸟群和鱼群的群体行为一直是科学家的研究兴趣,生物学家Craig Reynolds在1987年提出了一个非常有影响的鸟群聚集模型,在他的仿真中,每一个个体遵循:
全栈程序员站长
2022/09/19
1.9K0
标准粒子群算法(PSO)及其Matlab程序和常见改进算法_粒子群算法应用实例
最优化算法之粒子群算法(PSO)
粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解. PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。
全栈程序员站长
2022/06/28
2.8K0
最优化算法之粒子群算法(PSO)
数学建模--智能算法之粒子群优化算法
粒子群优化(Particle Swarm Optimization, PSO)算法是一种基于群体智能的优化方法,最早由Kennedy和Eberhart于1995年提出,灵感来源于对鸟群觅食行为的研究。该算法通过模拟鸟群觅食过程中的迁徙和群集行为,利用群体中个体之间的协作和信息共享来寻找最优解。
用户11315985
2024/10/16
2670
数学建模--智能算法之粒子群优化算法
基于粒子群算法(PSO)的TSP(Python实现)
基于粒子群算法(Particle Swarm Optimization, PSO)的TSP(Traveling Salesman Problem,旅行商问题),求解方法源自对集体智慧的模拟,通过模拟鸟群在搜索食物时的协作行为,不断调整每个“粒子”的位置和速度,以寻找全局最优解。在TSP问题中,粒子代表可能的路径解,通过不断更新粒子的位置,寻找一条最短的路径来访问所有城市。
不去幼儿园
2024/12/03
2780
基于粒子群算法(PSO)的TSP(Python实现)
粒子群算法的那些事
粒子群算法,顾名思义是仿生一大堆粒子的整体行为的一种启发式算法,谈到粒子群算法就不得不提到模拟鸟类群集行为的Boid模型
用户7506105
2021/08/09
4680
粒子群算法-基础知识
粒子群算法(particle swarmoptimization,PSO)由Kennedy和Eberhart在1995年提出,该算法对于Hepper的模拟鸟群(鱼群)的模型进行修正,以使粒子能够飞向解空间,并在最好解处降落,从而得到了粒子群优化算法。
算法与编程之美
2021/11/15
7130
粒子群算法(Particle swarm optimization | PSO)
粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是由J. Kennedy和R. C. Eberhart等开发的一种新的进化算法(Evolutionary Algorithm – EA)。
easyAI
2019/12/18
1.1K0
粒子群优化(PSO)算法概述
PSO(PSO——Particle Swarm Optimization)(基于种群的随机优化技术算法) 粒子群算法模仿昆虫、兽群、鸟群和鱼群等的群集行为,这些群体按照一种合作的方式寻找食物,群体中的每个成员通过学习它自身的经验和其他成员的经验来不断改变其搜索模式。 Kennedy和Eberhart提出粒子群算法的主要设计思想与两个方面的研究密切相关: 一是进化算法,粒子群算法和进化算法一样采用种群的方式进行搜索,这使得它可以同时搜索待优化目标函数解空间中的较多区域。 二是人工生命,即研究具有生命特征的人工系统,它采用的主要工具是计算机,主要方法是利用计算机编程模拟。 Millonas在用人工生命理论来研究群居动物的行为时,对于如何采用计算机构建具有合作行为的群集人工生命系统,提出了五条基本原则: (1)邻近原则(ProximityPrinciple):群体应该能够执行简单的空间和时间运算。 (2)质量原则(Quality Principle):群体应该能感受到周围环境中质量因素的变化,并对其产生响应。 (3)反应多样性原则(Principle ofDiverse Response):群体不应将自己获取资源的途径限制在狭窄的范围之内。 (4)稳定性原则(Principle ofStability):群体不应随着环境的每一次变化而改变自己的行为模式。 (5)适应性原则(Principle ofAdaptability):当改变行为模式带来的回报是值得的时候,群体应该改变其行为模式。 其中4、5两条原则是同一个问题的两面。微粒群系统满足以上五条原则。 近十余年来,针对粒子群算法展开的研究很多,前国内外已有多人从多个方面对微粒群算法进行过综述;并出现了多本关于粒子群算法的专著和以粒子群算法为主要研究内容的博士论文。
里克贝斯
2021/05/21
1.3K0
粒子群优化算法的实现方式_matlab粒子群优化算法
粒子群优化算法属于进化算法的一种,通过追随当前搜索到的最优值来寻找全局最优。粒子群算法也称粒子群优化算法(Particle Swarm Optimization,PSO),PSO有几个关键概念:粒子、优化函数、适值(Fitness Value)、飞行方向、飞行距离。
全栈程序员站长
2022/11/10
1.9K0
粒子群优化算法的实现方式_matlab粒子群优化算法
鸟群的启发--粒子群算法
1. PSO的基本思想: “自然界的蚁群、鸟群、鱼群、羊群、牛群、蜂群等,其实时时刻刻都在给予我们以某种启示,只不过我们常常忽略了大自然对我们的最大恩赐!”——马良教授 粒子群算法的思想源于对鸟群捕食
智能算法
2018/04/02
9650
鸟群的启发--粒子群算法
基于粒子群优化算法的函数寻优算法研究_matlab粒子群优化算法
粒子群算法(particle swarm optimization,PSO)是计算智能领域一种群体智能的优化算法。该算法最早由Kennedy和Eberhart在1995年提出的。PSO算法源于对鸟类捕食行为的研究,鸟类捕食时,找到食物最简单有效的策略就是搜寻当前距离食物最近的鸟的周围区域。PSO算法就是从这种生物种群行为特征中得到启发并用于求解优化问题的,算法中每个粒子都代表问题的一个潜在解,每个粒子对应一个由适应度函数决定的适应度值。粒子的速度决定了粒子移动的方向和距离,速度随自身及其他粒子的移动经验进行动态调整,从而实现个体在可解空间中的寻优。 假设在一个 D D D维的搜索空间中,由 n n n个粒子组成的种群 X = ( X 1 , X 2 , ⋯   , X n ) \boldsymbol{X}=(X_1,X_2,\dotsm,X_n) X=(X1​,X2​,⋯,Xn​),其中第 i i i个粒子表示为一个 D D D维的向量 X i = ( X i 1 , X i 2 , ⋯   , X i D ) T \boldsymbol{X_i}=(X_{i1},X_{i2},\dotsm,X_{iD})^T Xi​=(Xi1​,Xi2​,⋯,XiD​)T,代表第 i i i个粒子在 D D D维搜索空间中的位置,亦代表问题的一个潜在解。根据目标函数即可计算出每个粒子位置 X i \boldsymbol{X_i} Xi​对应的适应度值。第 i i i个粒子的速度为 V = ( V i 1 , V i 2 , ⋯   , V i D ) T \boldsymbol{V}=(V_{i1},V_{i2},\dotsm,V_{iD})^T V=(Vi1​,Vi2​,⋯,ViD​)T,其个体最优极值为 P i = ( P i 1 , P i 2 , ⋯   , P i D ) T \boldsymbol{P_i}=(P_{i1},P_{i2},\dotsm,P_{iD})^T Pi​=(Pi1​,Pi2​,⋯,PiD​)T,种群的群体最优极值为 P g = ( P g 1 , P g 2 , ⋯   , P g D ) T \boldsymbol{P_g}=(P_{g1},P_{g2},\dotsm,P_{gD})^T Pg​=(Pg1​,Pg2​,⋯,PgD​)T。 在每次迭代过程中,粒子通过个体极值和群体极值更新自身的速度和位置,即 V i d k + 1 = ω V i d k + c 1 r 1 ( P i d k − X i d k ) + c 2 r 2 ( P g d k − X i d k ) (1) V_{id}^{k+1}=\omega V_{id}^k+c_1r_1(P_{id}^k-X_{id}^k)+c_2r_2(P_{gd}^k-X_{id}^k)\tag{1} Vidk+1​=ωVidk​+c1​r1​(Pidk​−Xidk​)+c2​r2​(Pgdk​−Xidk​)(1) X i d k + 1 = X i d k + V k + 1 i d (2) X_{id}^{k+1}=X_{id}^k+V_{k+1_{id}}\tag {2} Xidk+1​=Xidk​+Vk+1id​​(2)其中, ω \omega ω为惯性权重; d = 1 , 2 , ⋯   , n d=1,2,\dotsm,n d=1,2,⋯,n; k k k为当前迭代次数; V i d V_{id} Vid​为粒子的速度; c 1 c_1 c1​和 c 2 c_2 c2​是非负的常数,称为加速度因子; r 1 r_1 r1​和 r 2 r_2 r2​是分布于 [ 0 , 1 ] [0,1] [0,1]区间的随机数。为防止粒子的盲目搜索,一般建议将其位置和速度限制在一定的区间 [ − X m a x , X m a x ] [-X_{max},X_{max}] [−Xmax​,Xmax​]、 [ − V m a x , V m a x ] [-V_{max},V_{max}] [−Vmax​,Vmax​]。
全栈程序员站长
2022/11/10
6810
基于粒子群优化算法的函数寻优算法研究_matlab粒子群优化算法
深度学习经典算法 | 粒子群算法详解
粒子群(PSO)算法最早是由美国电气工程师Eberhart和社会心理学家Kennedy在1995年基于群鸟觅食提出来的。
墨明棋妙27
2022/09/23
2.2K0
优化算法——粒子群算法(PSO)
    粒子群算法(PSO)属于群智能算法的一种,是通过模拟鸟群捕食行为设计的。假设区域里就只有一块食物(即通常优化问题中所讲的最优解),鸟群的任务是找到这个食物源。鸟群在整个搜寻的过程中,通过相互传递各自的信息,让其他的鸟知道自己的位置,通过这样的协作,来判断自己找到的是不是最优解,同时也将最优解的信息传递给整个鸟群,最终,整个鸟群都能聚集在食物源周围,即我们所说的找到了最优解,即问题收敛。
felixzhao
2019/02/13
5K0
相关推荐
一文搞懂什么是粒子群优化算法(Particle Swarm Optimization,PSO)【附应用举例】「建议收藏」
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验