转载自 | 专知
邱锡鹏教授的《神经网络与深度学习》一书较全面地介绍了神经网络、机器学习和深度学习的基本概念、模型和方法,同时也涉及深度学习中许多最新进展.书后还提供了相关数学分支的简要介绍,以供读者需要时参考。
本书电子版已在 GitHub 上开放共享,得到广泛好评,相信此书的出版可以给有意了解或进入这一颇有前途领域的读者提供一本很好的参考书.基本的深度学习相当于函数逼近问题,即函数或曲面的拟合,所不同的是,这里用作基函数的是非线性的神经网络函数,而原来数学中用的则是多项式、三角多项式、B-spline、一般spline以及小波函数等的线性组合。
主要特点:
系统性:系统地整理了神经网络和深度学习的知识体系。鉴于深度学习涉及的知识点较多,本书从机器学习的基本概念、神经网络模型以及概率图模型三个层面来串联深度学习所涉及的知识点,使读者对深度学习技术的理解更具系统性、条理性和全面性。
可读性:本书在编排上由浅入深,在语言表达上力求通俗易懂,并通过增加图例、示例以及必要的数学推导来理解抽象的概念。同时,附录简要介绍了本书所涉及的必要数学知识,便于读者查用。
实践性:本书在网站上配套了针对每章知识点的编程练习,使得读者在学习过程中可以将理论和实践密切结合,加深对知识点的理解,并具备分析问题和解决问题的能力。
资源地址:
邱锡鹏,神经网络与深度学习,机械工业出版社,https://nndl.github.io/, 2020.
目前还配套了211页ppt,本站进行了整理提供下载。
ppt截图:
图书pdf截图: