前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >LightGBM 可视化调参

LightGBM 可视化调参

作者头像
统计学家
发布2022-04-11 20:11:36
1.3K0
发布2022-04-11 20:11:36
举报

大家好,在100天搞定机器学习|Day63 彻底掌握 LightGBM一文中,我介绍了LightGBM 的模型原理和一个极简实例。最近我发现Huggingface与Streamlit好像更配,所以就开发了一个简易的 LightGBM 可视化调参的小工具,旨在让大家可以更深入地理解 LightGBM

网址: https://huggingface.co/spaces/beihai/LightGBM-parameter-tuning

只随便放了几个参数,调整这些参数可以实时看到模型评估指标的变化。代码我也放到文章中了,大家有好的优化思路可以留言。

下面就详细介绍一下实现过程:

LightGBM 的参数

在完成模型构建之后,必须对模型的效果进行评估,根据评估结果来继续调整模型的参数、特征或者算法,以达到满意的结果。

LightGBM,有核心参数,学习控制参数,IO参数,目标参数,度量参数,网络参数,GPU参数,模型参数,这里我常修改的便是核心参数,学习控制参数,度量参数等。

Control Parameters

含义

用法

max_depth

树的最大深度

当模型过拟合时,可以考虑首先降低 max_depth

min_data_in_leaf

叶子可能具有的最小记录数

默认20,过拟合时用

feature_fraction

例如 为0.8时,意味着在每次迭代中随机选择80%的参数来建树

boosting 为 random forest 时用

bagging_fraction

每次迭代时用的数据比例

用于加快训练速度和减小过拟合

early_stopping_round

如果一次验证数据的一个度量在最近的early_stopping_round 回合中没有提高,模型将停止训练

加速分析,减少过多迭代

lambda

指定正则化

0~1

min_gain_to_split

描述分裂的最小 gain

控制树的有用的分裂

max_cat_group

在 group 边界上找到分割点

当类别数量很多时,找分割点很容易过拟合时


CoreParameters

含义

用法

Task

数据的用途

选择 train 或者 predict

application

模型的用途

选择 regression: 回归时,binary: 二分类时,multiclass: 多分类时

boosting

要用的算法

gbdt, rf: random forest, dart: Dropouts meet Multiple Additive Regression Trees, goss: Gradient-based One-Side Sampling

num_boost_round

迭代次数

通常 100+

learning_rate

如果一次验证数据的一个度量在最近的 early_stopping_round 回合中没有提高,模型将停止训练

常用 0.1, 0.001, 0.003…

num_leaves

默认 31

device

cpu 或者 gpu

metric

mae: mean absolute error , mse: mean squared error , binary_logloss: loss for binary classification , multi_logloss: loss for multi classification


Faster Speed

better accuracy

over-fitting

将 max_bin 设置小一些

用较大的 max_bin

max_bin 小一些

num_leaves 大一些

num_leaves 小一些

用 feature_fraction 来做 sub-sampling

用 feature_fraction

用 bagging_fraction 和 bagging_freq

设定 bagging_fraction 和 bagging_freq

training data 多一些

training data 多一些

用 save_binary 来加速数据加载

直接用 categorical feature

用 gmin_data_in_leaf 和 min_sum_hessian_in_leaf

用 parallel learning

用 dart

用 lambda_l1, lambda_l2 ,min_gain_to_split 做正则化

num_iterations 大一些,learning_rate 小一些

用 max_depth 控制树的深度

模型评估指标

以分类模型为例,常见的模型评估指标有一下几种:

混淆矩阵 混淆矩阵是能够比较全面的反映模型的性能,从混淆矩阵能够衍生出很多的指标来。

ROC曲线 ROC曲线,全称The Receiver Operating Characteristic Curve,译为受试者操作特性曲线。这是一条以不同阈值 下的假正率FPR为横坐标,不同阈值下的召回率Recall为纵坐标的曲线。让我们衡量模型在尽量捕捉少数类的时候,误伤多数类的情况如何变化的。

AUC AUC(Area Under the ROC Curve)指标是在二分类问题中,模型评估阶段常被用作最重要的评估指标来衡量模型的稳定性。ROC曲线下的面积称为AUC面积,AUC面积越大说明ROC曲线越靠近左上角,模型越优;

Streamlit 实现

Streamlit我就不再多做介绍了,老读者应该都特别熟悉了。

核心代码如下,完整代码我放到Github,欢迎大家给个Star

https://github.com/tjxj/visual-parameter-tuning-with-streamlit

代码语言:javascript
复制
from definitions import *

st.set_option('deprecation.showPyplotGlobalUse', False)
st.sidebar.subheader("请选择模型参数:sunglasses:")

# 加载数据
breast_cancer = load_breast_cancer()
data = breast_cancer.data
target = breast_cancer.target

# 划分训练数据和测试数据
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2)

# 转换为Dataset数据格式
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)

# 模型训练
params = {'num_leaves': num_leaves, 'max_depth': max_depth,
            'min_data_in_leaf': min_data_in_leaf, 
            'feature_fraction': feature_fraction,
            'min_data_per_group': min_data_per_group, 
            'max_cat_threshold': max_cat_threshold,
            'learning_rate':learning_rate,'num_leaves':num_leaves,
            'max_bin':max_bin,'num_iterations':num_iterations
            }

gbm = lgb.train(params, lgb_train, num_boost_round=2000, valid_sets=lgb_eval, early_stopping_rounds=500)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)  
probs = gbm.predict(X_test, num_iteration=gbm.best_iteration)  # 输出的是概率结果  

fpr, tpr, thresholds = roc_curve(y_test, probs)
st.write('------------------------------------')
st.write('Confusion Matrix:')
st.write(confusion_matrix(y_test, np.where(probs > 0.5, 1, 0)))

st.write('------------------------------------')
st.write('Classification Report:')
report = classification_report(y_test, np.where(probs > 0.5, 1, 0), output_dict=True)
report_matrix = pd.DataFrame(report).transpose()
st.dataframe(report_matrix)

st.write('------------------------------------')
st.write('ROC:')

plot_roc(fpr, tpr)

上传Huggingface

Huggingface 前一篇文章(腾讯的这个算法,我搬到了网上,随便玩!)我已经介绍过了,这里就顺便再讲一下步骤吧。

step1:注册Huggingface账号

step2:创建Space,SDK记得选择Streamlit

step3:克隆新建的space代码,然后将改好的代码push上去

代码语言:javascript
复制
git lfs install 
git add .
git commit -m "commit from $beihai"
git push

push的时候会让输入用户名(就是你的注册邮箱)和密码,解决git总输入用户名和密码的问题:git config --global credential.helper store

push完成就大功告成了,回到你的space页对应项目,就可以看到效果了。

https://huggingface.co/spaces/beihai/LightGBM-parameter-tuning

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2022-04-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习与统计学 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • LightGBM 的参数
  • 模型评估指标
  • Streamlit 实现
  • 上传Huggingface
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档