首先简单了解一下什么是贝塞尔曲线(余弦函数曲线我就不多说了哈!),贝塞尔曲线又称贝兹曲线,是法国工程师皮埃尔.贝塞尔于1962年发表。贝塞尔曲线广泛应用于二维绘图软件,早期用于汽车车体设计。
三阶贝塞尔曲线由如下方程描述:
其中t的范围是0到1的闭区间。P0和P3是三阶贝塞尔曲线的起点和终点,P1和P2是曲线的控制点。
然后我们讲一下计算机绘制曲线的原理。从数学定义上,一条连续函数曲线有无数个点,从算法的特点将,算法具有有穷性。所以我们不可能把所有的点全部刻画在屏幕上。另一方面,计算机的屏幕像素是离散的,无法表示连续的曲线。于是引入一个概念,那就是微分思想。将曲线分为一个个小段,将曲线“化曲为直”。
最后说明一下计算机屏幕的坐标系。数学里的笛卡尔坐标系通常以水平向右为x轴正方向,垂直于x轴向上为y轴正方向。而计算机屏幕表示像素点时,其坐标原点位于屏幕左上角,x轴水平向右,而y轴垂直于x轴向下。
下面展示贝赛尔曲线函数代码:
def tri_bezier(p1,p2,p3,p4,t):
parm_1 = (1-t)**3
parm_2 = 3*(1-t)**2 * t
parm_3 = 3 * t**2 * (1-t)
parm_4 = t**3
px = p1[0] * parm_1 + p2[0] * parm_2 + p3[0] * parm_3 + p4[0] * parm_4
py = p1[1] * parm_1 + p2[1] * parm_2 + p3[1] * parm_3 + p4[1] * parm_4
return (px,py)
效果展示:
pip install bezier
手写bezier公式,生成bezier代码, 如果给的点数过多,则会生成一半bezier曲线,剩下的一半就需要进行拼接
import numpy as np
import matplotlib.pyplot as plt
import bezier
b_xs = []
b_ys = []
# xs表示原始数据
# n表示阶数
# k表示索引
def one_bezier_curve(a, b, t):
return (1 - t) * a + t * b
def n_bezier_curve(xs, n, k, t):
if n == 1:
return one_bezier_curve(xs[k], xs[k + 1], t)
else:
return (1 - t) * n_bezier_curve(xs, n - 1, k, t) + t * n_bezier_curve(xs, n - 1, k + 1, t)
def bezier_curve(xs, ys, num, b_xs, b_ys):
n = 5 # 采用5次bezier曲线拟合
t_step = 1.0 / (num - 1)
# t_step = 1.0 / num
print(t_step)
t = np.arange(0.0, 1 + t_step, t_step)
print(len(t))
for each in t:
b_xs.append(n_bezier_curve(xs, n, 0, each))
b_ys.append(n_bezier_curve(ys, n, 0, each))
def func():
xs = [1.0, 2.1, 3.0, 4.0, 5.0, 6.0]
ys = [0, 1.1, 2.1, 1.0, 0.2, 0]
num = 20
bezier_curve(xs, ys, num, b_xs, b_ys) # 将计算结果加入到列表中
print(b_xs, b_ys)
plt.figure()
plt.plot(b_xs, b_ys, 'r') # bezier曲线
# plt.plot(xs, ys) # 原曲线
# plt.show()
func()
拼接bezier曲线
def point_bezier(avoid_point):
global p
xs = avoid_point[0, 0] # 0
ys = avoid_point[1, 0] # 0
xe = avoid_point[0, -1] # 34.5844
ye = avoid_point[1, -1] # 0
Latoff = 2.3
startp = np.array([xs, ys])
endp = np.array([xe, ye])
endp1 = np.array([xe+2, ye])
# print(startp, endp)
P0 = startp
P1 = np.array([startp[0] + (endp[0] - startp[0]) / 8, startp[1]])
P2 = np.array([startp[0] + (endp[0] - startp[0]) / 8 * 2, startp[1]])
P3 = np.array([startp[0] + (endp[0] - startp[0]) / 8 * 2, startp[1] + Latoff])
P4 = np.array([startp[0] + (endp[0] - startp[0]) / 8 * 3, startp[1] + Latoff])
P5 = np.array([startp[0] + (endp[0] - startp[0]) / 8 * 4, startp[1] + Latoff])
P6 = np.array([startp[0] + (endp[0] - startp[0]) / 8 * 5, startp[1] + Latoff])
P7 = np.array([startp[0] + (endp[0] - startp[0]) / 8 * 6, startp[1] + Latoff])
P8 = np.array([startp[0] + (endp[0] - startp[0]) / 8 * 6, startp[1] + Latoff])
P9 = np.array([startp[0] + (endp[0] - startp[0]) / 8 * 7, startp[1]])
P10 = endp
P11 = endp1
i = 1
half_length = 0.5 * (xe + xs)
for u in np.arange(startp[0], startp[0] + (endp[0] - startp[0]) / 2, 0.2):
# for u =startp[0]:0.2: startp[1] + (endp[1] - startp[1]) / 2
c = (1 - (u - startp[0]) / half_length) ** 5 * P0 + 5 * (1 - (u - startp[0]) / half_length) ** 4 * (
u - startp[0]) / half_length * P1 + 10 * (1 - (u - startp[0]) / half_length) ** 3 * (
(u - startp[0]) / half_length) ** 2 * P2 + 10 * (1 - (u - startp[0]) / half_length) ** 2 * (
(u - startp[0]) / half_length) ** 3 * P3 + 5 * (1 - (u - startp[0]) / half_length) * (
(u - startp[0]) / half_length) ** 4 * P4 + ((u - startp[0]) / half_length) ** 5 * P5
i = i + 1
p = np.append(p, [c], axis=0)
for u in np.arange(startp[0] + half_length, endp[0], 0.2):
d = (1 - (u - startp[0] - half_length) / half_length) ** 5 * P6 + 5 * (
1 - (u - startp[0] - half_length) / half_length) ** 4 * (
u - startp[0] - half_length) / half_length * P7 + 10 * (
1 - (u - startp[0] - half_length) / half_length) ** 3 * (
(u - startp[0] - half_length) / half_length) ** 2 * P8 + 10 * (
1 - (u - startp[0] - half_length) / half_length) ** 2 * (
(u - startp[0] - half_length) / half_length) ** 3 * P9 + 5 * (
1 - (u - startp[0] - half_length) / half_length) * (
(u - startp[0] - half_length) / half_length) ** 4 * P10 + (
(u - startp[0] - half_length) / half_length) ** 5 * P11
i = i + 1
p = np.append(p, [d], axis=0)
return p
# print(p)
# plt.plot(p[:, 0], p[:, 1], 'r')
# plt.show()
使用python 内置bezier包,完成bezier曲线(使用前需安装bezier包)
a = np.array([[1.0, 2.1, 3.0, 4.0, 5.0, 6.0], [0, 1.1, 2.1, 1.0, 0.2, 0]])
curve = bezier.Curve(a, degree=5)
# print(curve)
s_vals = np.linspace(0.0, 1.0, 30)
data = curve.evaluate_multi(s_vals)
x33 = data[0]
y33 = data[1]
plt.plot(x33, y33, 'y', linewidth=2.0, linestyle="-", label="y2")
plt.show()
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有