前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >手撕 CNN 之 AlexNet(PyTorch 实战篇)

手撕 CNN 之 AlexNet(PyTorch 实战篇)

作者头像
红色石头
发布2022-04-14 08:05:21
1.3K0
发布2022-04-14 08:05:21
举报

大家好,我是红色石头!

在上一篇文章:

手撕 CNN 经典网络之 AlexNet(理论篇)

详细介绍了 AlexNet 的网络结构,今天我们将使用 PyTorch 来复现AlexNet网络,并用AlexNet模型来解决一个经典的Kaggle图像识别比赛问题。

正文开始!

1. 数据集制作

在论文中AlexNet作者使用的是ILSVRC 2012比赛数据集,该数据集非常大(有138G),下载、训练都很消耗时间,我们在复现的时候就不用这个数据集了。由于MNIST、CIFAR10、CIFAR100这些数据集图片尺寸都较小,不符合AlexNet网络输入尺寸227x227的要求,因此我们改用kaggle比赛经典的“猫狗大战”数据集了。

该数据集包含的训练集总共25000张图片,猫狗各12500张,带标签;测试集总共12500张,不带标签。我们仅使用带标签的25000张图片,分别拿出2500张猫和狗的图片作为模型的验证集。我们按照以下目录层级结构,将数据集图片放好。

958e930732386d933db29c338a86555e.png
958e930732386d933db29c338a86555e.png

为了方便大家训练,我们将该数据集放在百度云盘,下载链接:

链接:https://pan.baidu.com/s/1UEOzxWWMLCUoLTxdWUkB4A

提取码:cdue

1.1 制作图片数据的索引

准备好数据集之后,我们需要用PyTorch来读取并制作可以用来训练和测试的数据集。对于训练集和测试集,首先要分别制作对应的图片数据索引,即train.txt和test.txt两个文件,每个txt中包含每个图片的目录和对应类别class(cat对应的label=0,dog对应的label=1)。示意图如下:

8c7b0e13540bc748018e4e6199c742c3.png
8c7b0e13540bc748018e4e6199c742c3.png

制作图片数据索引train.txt和test.txt两个文件的python脚本程序如下:

代码语言:javascript
复制
import os

train_txt_path = os.path.join("data", "catVSdog", "train.txt")
train_dir = os.path.join("data", "catVSdog", "train_data")
valid_txt_path = os.path.join("data", "catVSdog", "test.txt")
valid_dir = os.path.join("data", "catVSdog", "test_data")

def gen_txt(txt_path, img_dir):
    f = open(txt_path, 'w')

    for root, s_dirs, _ in os.walk(img_dir, topdown=True):  # 获取 train文件下各文件夹名称
        for sub_dir in s_dirs:
            i_dir = os.path.join(root, sub_dir)             # 获取各类的文件夹 绝对路径
            img_list = os.listdir(i_dir)                    # 获取类别文件夹下所有png图片的路径
            for i in range(len(img_list)):
                if not img_list[i].endswith('jpg'):         # 若不是png文件,跳过
                    continue
                #label = (img_list[i].split('.')[0] == 'cat')? 0 : 1 
                label = img_list[i].split('.')[0]
                # 将字符类别转为整型类型表示
                if label == 'cat':
                    label = '0'
                else:
                    label = '1'
                img_path = os.path.join(i_dir, img_list[i])
                line = img_path + ' ' + label + '\n'
                f.write(line)
    f.close()

if __name__ == '__main__':
    gen_txt(train_txt_path, train_dir)
    gen_txt(valid_txt_path, valid_dir)

运行脚本之后就在./data/catVSdog/目录下生成train.txt和test.txt两个索引文件。

1.2 构建Dataset子类

PyTorch 加载自己的数据集,需要写一个继承自torch.utils.data中Dataset类,并修改其中的__init__方法、__getitem__方法、__len__方法。默认加载的都是图片,__init__的目的是得到一个包含数据和标签的list,每个元素能找到图片位置和其对应标签。然后用__getitem__方法得到每个元素的图像像素矩阵和标签,返回img和label。

代码语言:javascript
复制
from PIL import Image
from torch.utils.data import Dataset

class MyDataset(Dataset):
    def __init__(self, txt_path, transform = None, target_transform = None):
        fh = open(txt_path, 'r')
        imgs = []
        for line in fh:
            line = line.rstrip()
            words = line.split()
            imgs.append((words[0], int(words[1]))) # 类别转为整型int
            self.imgs = imgs 
            self.transform = transform
            self.target_transform = target_transform
    def __getitem__(self, index):
        fn, label = self.imgs[index]
        img = Image.open(fn).convert('RGB') 
        #img = Image.open(fn)
        if self.transform is not None:
            img = self.transform(img) 
        return img, label
    def __len__(self):
        return len(self.imgs)

getitem是核心函数。self.imgs是一个list,self.imgs[index]是一个str,包含图片路径,图片标签,这些信息是从上面生成的txt文件中读取;利用Image.open对图片进行读取,注意这里的img是单通道还是三通道的;self.transform(img)对图片进行处理,这个transform里边可以实现减均值、除标准差、随机裁剪、旋转、翻转、放射变换等操作。

1.3 加载数据集和数据预处理

当Mydataset构建好,剩下的操作就交给DataLoder来加载数据集。在DataLoder中,会触发Mydataset中的getiterm函数读取一张图片的数据和标签,并拼接成一个batch返回,作为模型真正的输入。

代码语言:javascript
复制
pipline_train = transforms.Compose([
    #随机旋转图片
    transforms.RandomHorizontalFlip(),
    #将图片尺寸resize到227x227
    transforms.Resize((227,227)),
    #将图片转化为Tensor格式
    transforms.ToTensor(),
    #正则化(当模型出现过拟合的情况时,用来降低模型的复杂度)
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    #transforms.Normalize(mean = [0.485, 0.456, 0.406],std = [0.229, 0.224, 0.225])
])
pipline_test = transforms.Compose([
    #将图片尺寸resize到227x227
    transforms.Resize((227,227)),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    #transforms.Normalize(mean = [0.485, 0.456, 0.406],std = [0.229, 0.224, 0.225])
])
train_data = MyDataset('./data/catVSdog/train.txt', transform=pipline_train)
test_data = MyDataset('./data/catVSdog/test.txt', transform=pipline_test)

#train_data 和test_data包含多有的训练与测试数据,调用DataLoader批量加载
trainloader = torch.utils.data.DataLoader(dataset=train_data, batch_size=64, shuffle=True)
testloader = torch.utils.data.DataLoader(dataset=test_data, batch_size=32, shuffle=False)
# 类别信息也是需要我们给定的
classes = ('cat', 'dog') # 对应label=0,label=1

在数据预处理中,我们将图片尺寸调整到227x227,符合AlexNet网络的输入要求。均值mean = [0.5, 0.5, 0.5],方差std = [0.5, 0.5, 0.5],然后使用transforms.Normalize进行归一化操作。

我们来看一下最终制作的数据集图片和它们对应的标签:

代码语言:javascript
复制
examples = enumerate(trainloader)
batch_idx, (example_data, example_label) = next(examples)
# 批量展示图片
for i in range(4):
    plt.subplot(1, 4, i + 1)
    plt.tight_layout()  #自动调整子图参数,使之填充整个图像区域
    img = example_data[i]
    img = img.numpy() # FloatTensor转为ndarray
    img = np.transpose(img, (1,2,0)) # 把channel那一维放到最后
    img = img * [0.5, 0.5, 0.5] + [0.5, 0.5, 0.5]
    plt.imshow(img)
    plt.title("label:{}".format(example_label[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()
95ab54f413464a12e63fd95d3721ec1e.png
95ab54f413464a12e63fd95d3721ec1e.png

2. 搭建AlexNet神经网络结构,并定义前向传播的过程

代码语言:javascript
复制
class AlexNet(nn.Module):
    """
    Neural network model consisting of layers propsed by AlexNet paper.
    """
    def __init__(self, num_classes=2):
        """
        Define and allocate layers for this neural net.
        Args:
            num_classes (int): number of classes to predict with this model
        """
        super().__init__()
        # input size should be : (b x 3 x 227 x 227)
        # The image in the original paper states that width and height are 224 pixels, but
        # the dimensions after first convolution layer do not lead to 55 x 55.
        self.net = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=96, kernel_size=11, stride=4),  # (b x 96 x 55 x 55)
            nn.ReLU(),
            nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=2),  # section 3.3
            nn.MaxPool2d(kernel_size=3, stride=2),  # (b x 96 x 27 x 27)
            nn.Conv2d(96, 256, 5, padding=2),  # (b x 256 x 27 x 27)
            nn.ReLU(),
            nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=2),
            nn.MaxPool2d(kernel_size=3, stride=2),  # (b x 256 x 13 x 13)
            nn.Conv2d(256, 384, 3, padding=1),  # (b x 384 x 13 x 13)
            nn.ReLU(),
            nn.Conv2d(384, 384, 3, padding=1),  # (b x 384 x 13 x 13)
            nn.ReLU(),
            nn.Conv2d(384, 256, 3, padding=1),  # (b x 256 x 13 x 13)
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2),  # (b x 256 x 6 x 6)
        )
        # classifier is just a name for linear layers
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5, inplace=True),
            nn.Linear(in_features=(256 * 6 * 6), out_features=500),
            nn.ReLU(),
            nn.Dropout(p=0.5, inplace=True),
            nn.Linear(in_features=500, out_features=20),
            nn.ReLU(),
            nn.Linear(in_features=20, out_features=num_classes),
        )

    def forward(self, x):
        """
        Pass the input through the net.
        Args:
            x (Tensor): input tensor
        Returns:
            output (Tensor): output tensor
        """
        x = self.net(x)
        x = x.view(-1, 256 * 6 * 6)  # reduce the dimensions for linear layer input
        return self.classifier(x)

在构建AlexNet网络里,参数num_classes指的是类别的数量,由于论文中AlexNet的输出是1000个类别,我们这里的数据集只有猫和狗两个类别,因此这里的全连接层的神经元个数做了微调。num_classes=2,输出层也是两个神经元,不是原来的1000个神经元。FC6由原来的4096个神经元改为500个神经元,FC7由原来的4096个神经元改为20个神经元。

这里的改动大家注意一下,根据实际数据集的类别数量进行调整。整个网络的其它结构跟论文中的完全一样。

3. 将定义好的网络结构搭载到GPU/CPU,并定义优化器

代码语言:javascript
复制
#创建模型,部署gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AlexNet().to(device)
#定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)

4. 定义训练过程

代码语言:javascript
复制
def train_runner(model, device, trainloader, optimizer, epoch):
    #训练模型, 启用 BatchNormalization 和 Dropout, 将BatchNormalization和Dropout置为True
    model.train()
    total = 0
    correct =0.0

    #enumerate迭代已加载的数据集,同时获取数据和数据下标
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        #把模型部署到device上
        inputs, labels = inputs.to(device), labels.to(device)
        #初始化梯度
        optimizer.zero_grad()
        #保存训练结果
        outputs = model(inputs)
        #计算损失和
        #多分类情况通常使用cross_entropy(交叉熵损失函数), 而对于二分类问题, 通常使用sigmod
        loss = F.cross_entropy(outputs, labels)
        #获取最大概率的预测结果
        #dim=1表示返回每一行的最大值对应的列下标
        predict = outputs.argmax(dim=1)
        total += labels.size(0)
        correct += (predict == labels).sum().item()
        #反向传播
        loss.backward()
        #更新参数
        optimizer.step()
        if i % 100 == 0:
            #loss.item()表示当前loss的数值
            print("Train Epoch{} \t Loss: {:.6f}, accuracy: {:.6f}%".format(epoch, loss.item(), 100*(correct/total)))
            Loss.append(loss.item())
            Accuracy.append(correct/total)
    return loss.item(), correct/total

5. 定义测试过程

代码语言:javascript
复制
def test_runner(model, device, testloader):
    #模型验证, 必须要写, 否则只要有输入数据, 即使不训练, 它也会改变权值
    #因为调用eval()将不启用 BatchNormalization 和 Dropout, BatchNormalization和Dropout置为False
    model.eval()
    #统计模型正确率, 设置初始值
    correct = 0.0
    test_loss = 0.0
    total = 0
    #torch.no_grad将不会计算梯度, 也不会进行反向传播
    with torch.no_grad():
        for data, label in testloader:
            data, label = data.to(device), label.to(device)
            output = model(data)
            test_loss += F.cross_entropy(output, label).item()
            predict = output.argmax(dim=1)
            #计算正确数量
            total += label.size(0)
            correct += (predict == label).sum().item()
        #计算损失值
        print("test_avarage_loss: {:.6f}, accuracy: {:.6f}%".format(test_loss/total, 100*(correct/total)))

6. 运行

代码语言:javascript
复制
#调用
epoch = 20
Loss = []
Accuracy = []
for epoch in range(1, epoch+1):
    print("start_time",time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
    loss, acc = train_runner(model, device, trainloader, optimizer, epoch)
    Loss.append(loss)
    Accuracy.append(acc)
    test_runner(model, device, testloader)
    print("end_time: ",time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())),'\n')

print('Finished Training')
plt.subplot(2,1,1)
plt.plot(Loss)
plt.title('Loss')
plt.show()
plt.subplot(2,1,2)
plt.plot(Accuracy)
plt.title('Accuracy')
plt.show()

经历 20 次 epoch 的 loss 和 accuracy 曲线如下:

cd9396a148fcaaee359a813a796f929f.png
cd9396a148fcaaee359a813a796f929f.png

经过20个epoch的训练之后,accuracy达到了87.94%。

7. 保存模型

代码语言:javascript
复制
print(model)
torch.save(model, './models/alexnet-catvsdog.pth') #保存模型

AlexNet 的模型会打印出来,并将模型模型命令为 alexnet-catvsdog.pth 保存在固定目录下。

7a13d9edc4378569b9af1a9305165c6a.png
7a13d9edc4378569b9af1a9305165c6a.png

8. 模型测试

下面使用一张猫狗大战测试集的图片进行模型的测试。

代码语言:javascript
复制
from PIL import Image
import numpy as np

if __name__ == '__main__':
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = torch.load('./models/alexnet-catvsdog.pth') #加载模型
    model = model.to(device)
    model.eval()    #把模型转为test模式

    #读取要预测的图片
    # 读取要预测的图片
    img = Image.open("./images/test_cat.jpg") # 读取图像
    #img.show()
    plt.imshow(img) # 显示图片
    plt.axis('off') # 不显示坐标轴
    plt.show()

    # 导入图片,图片扩展后为[1,1,32,32]
    trans = transforms.Compose(
        [
            transforms.Resize((227,227)),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
    img = trans(img)
    img = img.to(device)
    img = img.unsqueeze(0)  #图片扩展多一维,因为输入到保存的模型中是4维的[batch_size,通道,长,宽],而普通图片只有三维,[通道,长,宽]

    # 预测 
    # 预测 
    classes = ('cat', 'dog')
    output = model(img)
    prob = F.softmax(output,dim=1) #prob是2个分类的概率
    print("概率:",prob)
    value, predicted = torch.max(output.data, 1)
    predict = output.argmax(dim=1)
    pred_class = classes[predicted.item()]
    print("预测类别:",pred_class)
3a1045ccb763a5c8d66331e6837c65e2.png
3a1045ccb763a5c8d66331e6837c65e2.png

输出:

概率: tensor([[1.0000e+00, 5.8714e-13]], grad_fn=<SoftmaxBackward>) 预测类别: cat

模型预测结果正确!

好了,以上就是使用 PyTorch 复现 AlexNet 网络的核心代码。建议大家根据文章内容完整码一下代码,可以根据实际情况使用自己的数据集,并调整FC6、FC7、Output Layer的神经元个数。

完整代码我已经放在了 GitHub 上,地址:

https://github.com/RedstoneWill/CNN_PyTorch_Beginner/tree/main/AlexNet

手撕 CNN 系列:

手撕 CNN 经典网络之 LeNet-5(理论篇)

手撕 CNN 经典网络之 LeNet-5(MNIST 实战篇)

手撕 CNN 经典网络之 LeNet-5(CIFAR10 实战篇)

手撕 CNN 经典网络之 LeNet-5(自定义实战篇)

手撕 CNN 经典网络之 AlexNet(理论篇)

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2022-02-16 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 数据集制作
  • 2. 搭建AlexNet神经网络结构,并定义前向传播的过程
  • 3. 将定义好的网络结构搭载到GPU/CPU,并定义优化器
  • 4. 定义训练过程
  • 5. 定义测试过程
  • 6. 运行
  • 7. 保存模型
  • 8. 模型测试
相关产品与服务
内容识别
内容识别(Content Recognition,CR)是腾讯云数据万象推出的对图片内容进行识别、理解的服务,集成腾讯云 AI 的多种强大功能,对存储在腾讯云对象存储 COS 的数据提供图片标签、图片修复、二维码识别、语音识别、质量评估等增值服务。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档