前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >一个单例模式,被问7个问题,难!

一个单例模式,被问7个问题,难!

作者头像
田维常
发布2022-04-19 09:29:54
7020
发布2022-04-19 09:29:54
举报
文章被收录于专栏:Java后端技术栈cwnait

故事

我技术群里的一位小伙伴,昨天去面试,就因为一个单例模式,然后叫他回去等通知了。

下面是这位同学被问到的问题:

1、说说单例模式的特点?

2、你知道单例模式的具体使用场景吗?

3、单例模式常见写法有几种?

4、怎么样保证线程安全?

5、怎么不会被反射攻击?

6、怎样保证不会被序列化和反序列化的攻击?

7、枚举为什么会不会被序列化?

.....

你也可以尝试行的回答这几个题,看看自己能回答上几个。

定义

单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。单例模式属于创建型模式,它提供了一种创建对象的最佳方式。

这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象。

特点:

  • 1、单例类只能有一个实例。
  • 2、单例类必须自己创建自己的唯一实例。
  • 3、单例类必须给所有其他对象提供这一实例
  • 4、隐藏所有的构造方法

**目的:**保证一个类仅有一个实例,并提供一个访问它的全局访问点。

案例:一家企业只能有一个CEO,有多个了其实乱套了。

使用场景

需要确保任何情况下都绝对只有一个实例。

比如:ServletContextServletConfigApplicationContextDBTool等,都使用到了单列模式。

单例模式的写法

  • 饿汉式
  • 懒汉式(包含双重检查锁、静态内部类)
  • 注册式(以枚举为例)

饿汉式

从名字上就能看出,饿汉:饿了就得先吃饱,所以,一开始就搞定了。

饿汉式主要是使用了static,饿汉式也有两种写法,但本质可以理解为是一样的。

代码语言:javascript
复制
public class HungrySingleton{

    private static final HungrySingleton INSTANCE;
    static {
        INSTANCE=new HungrySingleton();
    }
//    private static final HungrySingleton INSTANCE=new HungrySingleton();
    private HungrySingleton(){

    }

    public static HungrySingleton getInstance(){
        return INSTANCE;
    }
}

饿汉式有个致命的缺点:浪费空间,不需要也实例化。如果是成千上万个,也这么玩,想想有多恐怖。

于是,就会想到,能不能在使用的时候在实例化,从而引出了懒汉式。

懒汉式

顾名思义,就是需要的时候再创建,因为懒,你不调用我方法,我是不会干活的。

下面是懒汉式的Java代码实现:

代码语言:javascript
复制
public class LazySingleton {

    private static LazySingleton lazySingleton = null;

    private LazySingleton() {
    }

    public static LazySingleton getInstance() {
        if (lazySingleton == null) {//01
            lazySingleton = new LazySingleton();//02
        }
        return lazySingleton;
    } 
}

进入getInstance方法,先判断lazySingleton是否为空,为空,则创建一个对象,然后返回此对象。

但是,问题来了:

两个线程同时进入getInstance方法,然后都去执行01这行代码,都是true,然后各自进去创建一个对象,然后返回自己创建的对象。

这岂不是不满足只有唯一 一个对象的了吗?所以这类存在线程安全的问题,那怎么解决呢?

第一印象肯定都是想到加锁。于是,就有了下面的线程安全的懒加载版本:

代码语言:javascript
复制
public class LazySingleton {

    private static LazySingleton lazySingleton = null;

    private LazySingleton() {
    }

    //简单粗暴的线程安全问题解决方案
    //依然存在性能问题
  public synchronized static LazySingleton getInstance() {
        if (lazySingleton == null) {
            lazySingleton = new LazySingleton();
        }
        return lazySingleton;
    }
}

给getInstance方法加锁同步锁标志synchronized,但是又涉及到锁的问题了,同步锁是对系统性能优影响的,尽管JDK1.6后,对其做了优化,但它毕竟还是涉及到锁的开销。

每个线程调用getInstance方法时候,都会涉及到锁,所以又对此进行了优化成为了大家耳熟能详的双重检查锁。

双重检查锁

代码实现如下:

代码语言:javascript
复制

public class LazyDoubleCheckSingleton { 
    private static LazyDoubleCheckSingleton lazyDoubleCheckSingleton = null;

    private LazyDoubleCheckSingleton() {
    }

    public static LazyDoubleCheckSingleton getInstance() {
        if (lazyDoubleCheckSingleton == null) {//01
            synchronized (LazyDoubleCheckSingleton.class) {
                if (lazyDoubleCheckSingleton == null) {//02
                    lazyDoubleCheckSingleton = new LazyDoubleCheckSingleton();
                }
            }
        }
        return lazyDoubleCheckSingleton;
    }

}

这段代码中,在01行,如果不为空,就直接返回,这是第一次检查。如果为空,则进入同步代码块,02行又进行一次检查。

双重检查就是现实if判断、获取类对象锁、if判断。

上面这段代码,看似没问题,其实还是有问题的,比如:指令重排序(需要有JVM知识垫底哈)

指令重排是什么意思呢?

比如java中简单的一句

代码语言:javascript
复制
lazyDoubleCheckSingleton = new LazyDoubleCheckSingleton();

会被编译器编译成如下JVM指令:

代码语言:javascript
复制
memory =allocate();    //1:分配对象的内存空间
ctorInstance(memory);  //2:初始化对象
instance =memory;     //3:设置instance指向刚分配的内存地址

但是这些指令顺序并非一成不变,有可能会经过JVM和CPU的优化,指令重排成下面的顺序:

代码语言:javascript
复制
memory =allocate();    //1:分配对象的内存空间
instance =memory;     //3:设置instance指向刚分配的内存地址
ctorInstance(memory);  //2:初始化对象

为了防止指令重排序,所以,我们可以使用volatile来做文章(注意:volatile能防止指令重排序和线程可见性)。

于是,更好的版本就出来了。

代码语言:javascript
复制

public class LazyDoubleCheckSingleton {
    //使用volatile修饰
    private volatile static LazyDoubleCheckSingleton lazyDoubleCheckSingleton = null; 
    private LazyDoubleCheckSingleton() {
    }

    public static LazyDoubleCheckSingleton getInstance() {
        if (lazyDoubleCheckSingleton == null) {
            synchronized (LazyDoubleCheckSingleton.class) {
                if (lazyDoubleCheckSingleton == null) {
                    lazyDoubleCheckSingleton = new LazyDoubleCheckSingleton();
                }
            }
        }
        return lazyDoubleCheckSingleton;
    }
}

尽管相比前面的版本,确实改进了很多,但依然有同步锁,还是会影响性能问题。于是,又进行优化为静态内部类方式:

静态内部类

下面是静态内部类的代码实现:

代码语言:javascript
复制
public class LazyStaticSingleton {


    private LazyStaticSingleton() {
    }

    public static LazyStaticSingleton getInstance() {
        return LazyHolder.LAZY_STATIC_SINGLETON;
    }

    //需要等到外部方法调用是猜执行
    //巧用内部类的特性
    //JVM底层执行,完美的规避了线程安全的问题
    private static class LazyHolder {
        private static final LazyStaticSingleton LAZY_STATIC_SINGLETON = new LazyStaticSingleton();
    }
}

利用了内部类的特性,在JVM底层,能完美的规避了线程安全的问题,这种方式也是目前很多项目里喜欢使用的方式。

但是,还是会存在潜在的风险,什么风险呢?

可以使用 反射 暴力的串改,同样也会出现创建多个实例:

反射代码实现如下:

代码语言:javascript
复制
import java.lang.reflect.Constructor;

public class LazyStaticSingletonTest {
    public static void main(String[] args) {
        try {
            Class<?> clazz = LazyStaticSingleton.class;
            Constructor constructor = clazz.getDeclaredConstructor(null);
            //强行访问
            constructor.setAccessible(true);
            Object object = constructor.newInstance();

            Object object1 = LazyStaticSingleton.getInstance();

            System.out.println(object == object1);
        } catch (Exception ex) {
            ex.printStackTrace();
        }
    }
}

这段代码运行结果为false。

所以,上面说的双重检查锁的方式,通过反射,还是会存在潜在的风险。怎么办呢?

在《Effect java 》这本书中,作者推荐使用枚举来实现单例模式,因为枚举不能被反射。

枚举

下面是枚举式的单例模式的代码实现:

代码语言:javascript
复制
public enum EnumSingleton {
    INSTANCE;
    private Object data;

    public Object getData() {
        return data;
    }

    public static EnumSingleton getInstance(){
        return INSTANCE;
    }
}

我们把上面反射的那个代码,来测试这个枚举式单例模式。

代码语言:javascript
复制
public class EnumTest {
    public static void main(String[] args) {
        try {
            Class<?> clazz = EnumSingleton.class;
            Constructor constructor = clazz.getDeclaredConstructor(null);
            //强行访问
            constructor.setAccessible(true);
            Object object = constructor.newInstance();

            Object object1 = EnumSingleton.getInstance();

            System.out.println(object == object1);
        } catch (Exception ex) {
            ex.printStackTrace();
        }
    }
}

运行这段代码:

代码语言:javascript
复制
java.lang.NoSuchMethodException: com.tian.my_code.test.designpattern.singleton.EnumSingleton.<init>()
 at java.lang.Class.getConstructor0(Class.java:3082)
 at java.lang.Class.getDeclaredConstructor(Class.java:2178)
 at com.tian.my_code.test.designpattern.singleton.EnumTest.main(EnumTest.java:41)

还真的不能用反射来搞。如果此时面试官,为什么枚举不能被反射呢

为什么枚举不能被反射呢?

我们在反射的代码中

代码语言:javascript
复制
  Constructor constructor = clazz.getDeclaredConstructor(null);

这行代码是获取他的无参构造方法。并且,从错误日志中,我们也可以看到,错误出现就是在getConstructor0方法中,并且,提示的是没有找到无参构造方法。

很奇怪,枚举也是类,不是说如果我们不给类显示定义构造方法时候,会默认给我们创建一个无参构造方法吗?

于是,我想到了一个办法,我们可以使用jad这个工具去反编译的我们的枚举式单例的.class文件。

找到我们的class文件所在目录,然后我们可以执行下面这个命令:

代码语言:javascript
复制
C:\Users\Administrator>jad D:\workspace\my_code\other-local-demo\target\classes
com\tian\my_code\test\designpattern\singleton\EnumSingleton.class
Parsing D:\workspace\my_code\other-local-demo\target\classes\com\tian\my_code\t
st\designpattern\singleton\EnumSingleton.class... Generating EnumSingleton.jad

注意:class文件目录以及生成的jad文件所在的目录。

然后打开EnumSingleton.jad 文件:

于是,我就想到了,那我们使用有参构造方法来创建:

代码语言:javascript
复制
public class EnumTest {
    public static void main(String[] args) {
        try {
            Class<?> clazz = EnumSingleton.class; 
            Constructor constructor = clazz.getDeclaredConstructor(String.class,int.class);
            //强行访问
            constructor.setAccessible(true);
            Object object = constructor.newInstance("田维常",996);

            Object object1 = EnumSingleton.getInstance();

            System.out.println(object == object1);
        } catch (Exception ex) {
            ex.printStackTrace();
        }
    }
}

再次运行这段代码,结果:

代码语言:javascript
复制
java.lang.IllegalArgumentException: Cannot reflectively create enum objects
 at java.lang.reflect.Constructor.newInstance(Constructor.java:417)
 at com.tian.my_code.test.designpattern.singleton.EnumTest.main(EnumTest.java:45)

提示很明显了,就是不让我们使用反射的方式创建枚举对象。

代码语言:javascript
复制
    public T newInstance(Object ... initargs)
        throws InstantiationException, IllegalAccessException,
               IllegalArgumentException, InvocationTargetException
    {
        if (!override) {
            if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) {
                Class<?> caller = Reflection.getCallerClass();
                checkAccess(caller, clazz, null, modifiers);
            }
        }
        //Modifier.ENUM就是用来判断是否为枚举的
        if ((clazz.getModifiers() & Modifier.ENUM) != 0)
            throw new IllegalArgumentException("Cannot reflectively create enum objects");
        ConstructorAccessor ca = constructorAccessor;   // read volatile
        if (ca == null) {
            ca = acquireConstructorAccessor();
        }
        @SuppressWarnings("unchecked")
        T inst = (T) ca.newInstance(initargs);
        return inst;
    }

所以,到此,我们才算真正的理清楚了,为什么枚举不让反射的原因。

序列化破坏

我们以非线程安全的饿汉式来演示一下,看看序列化是如何破坏到了模式的。

代码语言:javascript
复制
public class ReflectTest {

    public static void main(String[] args) {
        // 准备两个对象,singleton1接收从输入流中反序列化的实例
        HungrySingleton singleton1 = null;
        HungrySingleton singleton2 = HungrySingleton.getInstance();
        try {
            // 序列化
            FileOutputStream fos = new FileOutputStream("HungrySingleton.txt");
            ObjectOutputStream oos = new ObjectOutputStream(fos);
            oos.writeObject(singleton2);
            oos.flush();
            oos.close();

            // 反序列化
            FileInputStream fis = new FileInputStream("HungrySingleton.txt");
            ObjectInputStream ois = new ObjectInputStream(fis);
            singleton1 = (HungrySingleton) ois.readObject();
            ois.close();

            System.out.println(singleton1);
            System.out.println(singleton2);
            
            System.out.println(singleton1 == singleton2);

        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

运行结果:

代码语言:javascript
复制
com.tian.my_code.test.designpattern.singleton.HungrySingleton@7e6cbb7a
com.tian.my_code.test.designpattern.singleton.HungrySingleton@452b3a41
false

看到了吗?

使用序列化是可以破坏到了模式的,这种方式,可能很多人不是很清楚。

如何防止呢?

我们对非线程安全的饿汉式代码进行稍微修改:

代码语言:javascript
复制
public class HungrySingleton implements Serializable{

    private static final HungrySingleton INSTANCE;
    static {
        INSTANCE=new HungrySingleton();
    } 
    private HungrySingleton(){

    }

    public static HungrySingleton getInstance(){
        return INSTANCE;
    }
    //添加了readResolve方法,并返回INSTANCE
    private Object readResolve方法,并返回(){
        return INSTANCE;
    }
}

再次运行上那段序列化测试的代码,其结果如下:

代码语言:javascript
复制
com.tian.my_code.test.designpattern.singleton.HungrySingleton@452b3a41
com.tian.my_code.test.designpattern.singleton.HungrySingleton@452b3a41
true

嘿嘿,这样我们是不是就避免了只创建了一个实例?

答案:否

在类ObjectInputStream的readObject()方法中调用了另外一个方法readObject0(false)方法。在readObject0(false)方法中调用了checkResolve(readOrdinaryObject(unshared))方法。

在readOrdinaryObject方法中有这么一段代码:

代码语言:javascript
复制
Object obj;
try { 
     //是否有构造方法,有构造放就创建实例
      obj = desc.isInstantiable() ? desc.newInstance() : null;
 } catch (Exception ex) {
 ... 
 }
//判断单例类是否有readResolve方法
if (desc.hasReadResolveMethod()) {
    Object rep = desc.invokeReadResolve(obj); 
}

//invokeReadResolve方法中
if (readResolveMethod != null) { 
    //调用了我们单例类中的readResolve,并返回该方法返回的对象
    //注意:是无参方法
     return readResolveMethod.invoke(obj, (Object[]) null);
}

绕了半天,原来他是这么玩的,上来就先创建一个实例,然后再去检查我们的单例类是否有readResolve无参方法,我们单例类中的readResolve方法

代码语言:javascript
复制
private Object readResolve(){
        return INSTANCE;
}
结论

我们重写了readResolve()无参方法,表面上看是只创建了一个实例,其实只创建了两个实例。

紧接着,面试官继续问:枚举式单例能不能被序列化破坏呢?

枚举式单例能不能被序列化破坏呢?

答案:不能被破坏,请看我慢慢给你道来。

don't talk ,show me the code。

我们先来验证一下是否真的不能被破坏,请看代码:

代码语言:javascript
复制
public class EnumTest {

    public static void main(String[] args) {
        // 准备两个对象,singleton1接收从输入流中反序列化的实例
        EnumSingleton singleton1 = null;
        EnumSingleton singleton2 = EnumSingleton.getInstance();
        try {
            // 序列化
            FileOutputStream fos = new FileOutputStream("EnumSingleton.obj");
            ObjectOutputStream oos = new ObjectOutputStream(fos);
            oos.writeObject(singleton2);
            oos.flush();
            oos.close();

            // 反序列化
            FileInputStream fis = new FileInputStream("EnumSingleton.obj");
            ObjectInputStream ois = new ObjectInputStream(fis);
            singleton1 = (EnumSingleton) ois.readObject();
            ois.close();

            System.out.println(singleton1);
            System.out.println(singleton2);

            System.out.println(singleton1 == singleton2);

        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

运行结果:

代码语言:javascript
复制
INSTANCE
INSTANCE
true

确实,枚举式单例是不会被序列化所破坏,那为什么呢?总得有个证件理由吧。

在类ObjectInputStream的readObject()方法中调用了另外一个方法readObject0(false)方法。在readObject0(false)方法中调用了checkResolve(readOrdinaryObject(unshared))方法。

代码语言:javascript
复制
 case TC_ENUM:
    return checkResolve(readEnum(unshared));

在readEnum方法中

代码语言:javascript
复制
private Enum<?> readEnum(boolean unshared) throws IOException {
        if (bin.readByte() != TC_ENUM) {
            throw new InternalError();
        }
        Class<?> cl = desc.forClass();
        if (cl != null) {
            try {
                @SuppressWarnings("unchecked")
                //重点
                Enum<?> en = Enum.valueOf((Class)cl, name);
                result = en;
                //...其他代码省略
            }
        }
}
public static <T extends Enum<T>> T valueOf(Class<T> enumType,
                                                String name) {
       //enumType.enumConstantDirectory()返回的是一个HashMap
       //通过HashMap的get方法获取
        T result = enumType.enumConstantDirectory().get(name);
        if (result != null)
            return result;
        if (name == null)
            throw new NullPointerException("Name is null");
        throw new IllegalArgumentException(
            "No enum constant " + enumType.getCanonicalName() + "." + name);
}
//返回一个HashMap
 Map<String, T> enumConstantDirectory() {
        if (enumConstantDirectory == null) {
            T[] universe = getEnumConstantsShared();
            if (universe == null)
                throw new IllegalArgumentException(
                    getName() + " is not an enum type");
            //使用的是HashMap
            Map<String, T> m = new HashMap<>(2 * universe.length);
            for (T constant : universe)
                m.put(((Enum<?>)constant).name(), constant);
            enumConstantDirectory = m;
        }
        return enumConstantDirectory;
}

所以,枚举式单例模式是使用了Map<String, T>,Map的key就是我们枚举类中的INSTANCE。由于Map的key的唯一性,然后就缔造出唯一实例。江湖上也把这个枚举式单例模式叫做注册式单例模式

在Spring中也是有大量使用这种注册式单例模式,IOC容器就是典型的代表。

总结

本文讲述了单例模式的定义、单例模式常规写法。单例模式线程安全问题的解决,反射破坏、反序列化破坏等。

注意:不要为了套用设计模式,而使用设计模式。而是要,在业务上遇到问题时,很自然地联想单设计模式作为一种捷径方法。

单例模式的优缺点

优点

在内存中只有一个实例,减少内存开销。可以避免对资源的多重占用。设置全局访问点,严格控制访问。

缺点

没有借口,扩展性很差。如果要扩展单例对象,只有修改代码,没有其他途径。

单例模式是 不符合开闭原则的。

知识点

单例模式的重点知识总结:

  • 私有化构造器
  • 保证线程安全
  • 延迟加载
  • 防止反射攻击
  • 防止序列化和反序列化的破坏
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-04-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Java后端技术全栈 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 故事
  • 定义
  • 使用场景
  • 单例模式的写法
    • 饿汉式
      • 懒汉式
        • 双重检查锁
          • 静态内部类
            • 枚举
              • 为什么枚举不能被反射呢?
            • 序列化破坏
              • 如何防止呢?
              • 结论
            • 枚举式单例能不能被序列化破坏呢?
            • 总结
              • 单例模式的优缺点
                • 优点
                • 缺点
              • 知识点
              相关产品与服务
              文件存储
              文件存储(Cloud File Storage,CFS)为您提供安全可靠、可扩展的共享文件存储服务。文件存储可与腾讯云服务器、容器服务、批量计算等服务搭配使用,为多个计算节点提供容量和性能可弹性扩展的高性能共享存储。腾讯云文件存储的管理界面简单、易使用,可实现对现有应用的无缝集成;按实际用量付费,为您节约成本,简化 IT 运维工作。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档