前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布

NIO~~

作者头像
大忽悠爱学习
发布2022-05-06 12:46:01
8800
发布2022-05-06 12:46:01
举报
文章被收录于专栏:c++与qt学习

NIO~~

第四章 JAVA NIO深入剖析

在讲解利用NIO实现通信架构之前,我们需要先来了解一下NIO的基本特点和使用。

4.1 Java NIO 基本介绍

  • Java NIO(New IO)也有人称之为 java non-blocking IO是从Java 1.4版本开始引入的一个新的IO API,可以替代标准的Java IO API。NIO与原来的IO有同样的作用和目的,但是使用的方式完全不同,NIO支持面向缓冲区的、基于通道的IO操作。NIO将以更加高效的方式进行文件的读写操作。NIO可以理解为非阻塞IO,传统的IO的read和write只能阻塞执行,线程在读写IO期间不能干其他事情,比如调用socket.read()时,如果服务器一直没有数据传输过来,线程就一直阻塞,而NIO中可以配置socket为非阻塞模式。
  • NIO 相关类都被放在 java.nio 包及子包下,并且对原 java.io 包中的很多类进行改写。
  • NIO 有三大核心部分:Channel( 通道) ,Buffer( 缓冲区), Selector( 选择器)
  • Java NIO 的非阻塞模式,使一个线程从某通道发送请求或者读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取,而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。 非阻塞写也是如此,一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。
  • 通俗理解:NIO 是可以做到用一个线程来处理多个操作的。假设有 1000 个请求过来,根据实际情况,可以分配20 或者 80个线程来处理。不像之前的阻塞 IO 那样,非得分配 1000 个。

4.2 NIO 和 BIO 的比较

  • BIO 以流的方式处理数据,而 NIO 以块的方式处理数据,块 I/O 的效率比流 I/O 高很多
  • BIO 是阻塞的,NIO 则是非阻塞的
  • BIO 基于字节流和字符流进行操作,而 NIO 基于 Channel(通道)和 Buffer(缓冲区)进行操作,数据总是从通道 读取到缓冲区中,或者从缓冲区写入到通道中。Selector(选择器)用于监听多个通道的事件(比如:连接请求,数据到达等),因此使用单个线程就可以监听多个客户端通道

NIO

BIO

面向缓冲区(Buffer)

面向流(Stream)

非阻塞(Non Blocking IO)

阻塞IO(Blocking IO)

选择器(Selectors)

4.3 NIO 三大核心原理示意图

NIO 有三大核心部分:Channel( 通道) ,Buffer( 缓冲区), Selector( 选择器)

Buffer缓冲区

缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存。这块内存被包装成NIO Buffer对象,并提供了一组方法,用来方便的访问该块内存。相比较直接对数组的操作,Buffer API更加容易操作和管理。

Channel(通道)

Java NIO的通道类似流,但又有些不同:既可以从通道中读取数据,又可以写数据到通道。但流的(input或output)读写通常是单向的。 通道可以非阻塞读取和写入通道,通道可以支持读取或写入缓冲区,也支持异步地读写。

Selector选择器

Selector是 一个Java NIO组件,可以能够检查一个或多个 NIO 通道,并确定哪些通道已经准备好进行读取或写入。这样,一个单独的线程可以管理多个channel,从而管理多个网络连接,提高效率

请添加图片描述
请添加图片描述
  • 每个 channel 都会对应一个 Buffer
  • 一个线程对应Selector , 一个Selector对应多个 channel(连接)
  • 程序切换到哪个 channel 是由事件决定的
  • Selector 会根据不同的事件,在各个通道上切换
  • Buffer 就是一个内存块 , 底层是一个数组
  • 数据的读取写入是通过 Buffer完成的 , BIO 中要么是输入流,或者是输出流, 不能双向,但是 NIO 的 Buffer 是可以读也可以写。
  • Java NIO系统的核心在于:通道(Channel)和缓冲区 (Buffer)。通道表示打开到 IO 设备(例如:文件、 套接字)的连接。若需要使用 NIO 系统,需要获取 用于连接 IO 设备的通道以及用于容纳数据的缓冲 区。然后操作缓冲区,对数据进行处理。简而言之,Channel 负责传输, Buffer 负责存取数据

4.4 NIO核心一:缓冲区(Buffer)

缓冲区(Buffer)

一个用于特定基本数据类 型的容器。由 java.nio 包定义的,所有缓冲区 都是 Buffer 抽象类的子类.。Java NIO 中的 Buffer 主要用于与 NIO 通道进行 交互,数据是从通道读入缓冲区,从缓冲区写入通道中的

请添加图片描述
请添加图片描述

Buffer 类及其子类

Buffer 就像一个数组,可以保存多个相同类型的数据。根 据数据类型不同 ,有以下 Buffer 常用子类:

  • ByteBuffer
  • CharBuffer
  • ShortBuffer
  • IntBuffer
  • LongBuffer
  • FloatBuffer
  • DoubleBuffer

上述 Buffer 类 他们都采用相似的方法进行管理数据,只是各自 管理的数据类型不同而已。都是通过如下方法获取一个 Buffer 对象:

代码语言:javascript
复制
static XxxBuffer allocate(int capacity) : 创建一个容量为capacity 的 XxxBuffer 对象

缓冲区的基本属性

Buffer 中的重要概念:

  • 容量 (capacity) :作为一个内存块,Buffer具有一定的固定大小,也称为"容量",缓冲区容量不能为负,并且创建后不能更改。
  • 限制 (limit):表示缓冲区中可以操作数据的大小(limit 后数据不能进行读写)。缓冲区的限制不能为负,并且不能大于其容量。 写入模式,限制等于buffer的容量。读取模式下,limit等于写入的数据量
  • 位置 (position):下一个要读取或写入的数据的索引。缓冲区的位置不能为 负,并且不能大于其限制
  • 标记 (mark)与重置 (reset):标记是一个索引,通过 Buffer 中的 mark() 方法 指定 Buffer 中一个特定的 position,之后可以通过调用 reset() 方法恢复到这 个 position. 标记、位置、限制、容量遵守以下不变式: 0 <= mark <= position <= limit <= capacity
  • 图示:
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

Buffer常见方法

代码语言:javascript
复制
Buffer clear() 清空缓冲区并返回对缓冲区的引用
Buffer flip() 为 将缓冲区的界限设置为当前位置,并将当前位置充值为 0
int capacity() 返回 Buffer 的 capacity 大小
boolean hasRemaining() 判断缓冲区中是否还有元素
int limit() 返回 Buffer 的界限(limit) 的位置
Buffer limit(int n) 将设置缓冲区界限为 n, 并返回一个具有新 limit 的缓冲区对象
Buffer mark() 对缓冲区设置标记
int position() 返回缓冲区的当前位置 position
Buffer position(int n) 将设置缓冲区的当前位置为 n , 并返回修改后的 Buffer 对象
int remaining() 返回 position 和 limit 之间的元素个数
Buffer reset() 将位置 position 转到以前设置的 mark 所在的位置
Buffer rewind() 将位置设为为 0, 取消设置的 mark

缓冲区的数据操作

代码语言:javascript
复制
Buffer 所有子类提供了两个用于数据操作的方法:get()put() 方法
取获取 Buffer中的数据
get() :读取单个字节
get(byte[] dst):批量读取多个字节到 dst 中
get(int index):读取指定索引位置的字节(不会移动 position)
    
放到 入数据到 Buffer 中 中
put(byte b):将给定单个字节写入缓冲区的当前位置
put(byte[] src):将 src 中的字节写入缓冲区的当前位置
put(int index, byte b):将指定字节写入缓冲区的索引位置(不会移动 position)

使用Buffer读写数据一般遵循以下四个步骤:

  • 1.写入数据到Buffer
  • 2.调用flip()方法,转换为读取模式
  • 3.从Buffer中读取数据
  • 4.调用buffer.clear()方法或者buffer.compact()方法清除缓冲区

案例演示

代码语言:javascript
复制
public class TestBuffer {
   @Test
   public void test3(){
      //分配直接缓冲区
      ByteBuffer buf = ByteBuffer.allocateDirect(1024);
      System.out.println(buf.isDirect());
   }
   
   @Test
   public void test2(){
      String str = "itheima";
      
      ByteBuffer buf = ByteBuffer.allocate(1024);
      
      buf.put(str.getBytes());
      
      buf.flip();
      
      byte[] dst = new byte[buf.limit()];
      buf.get(dst, 0, 2);
      System.out.println(new String(dst, 0, 2));
      System.out.println(buf.position());
      
      //mark() : 标记
      buf.mark();
      
      buf.get(dst, 2, 2);
      System.out.println(new String(dst, 2, 2));
      System.out.println(buf.position());
      
      //reset() : 恢复到 mark 的位置
      buf.reset();
      System.out.println(buf.position());
      
      //判断缓冲区中是否还有剩余数据
      if(buf.hasRemaining()){
         //获取缓冲区中可以操作的数量
         System.out.println(buf.remaining());
      }
   }
    
   @Test
   public void test1(){
      String str = "itheima";
      //1. 分配一个指定大小的缓冲区
      ByteBuffer buf = ByteBuffer.allocate(1024);
      System.out.println("-----------------allocate()----------------");
      System.out.println(buf.position());
      System.out.println(buf.limit());
      System.out.println(buf.capacity());
      
      //2. 利用 put() 存入数据到缓冲区中
      buf.put(str.getBytes());
      System.out.println("-----------------put()----------------");
      System.out.println(buf.position());
      System.out.println(buf.limit());
      System.out.println(buf.capacity());
      
      //3. 切换读取数据模式
      buf.flip();
      System.out.println("-----------------flip()----------------");
      System.out.println(buf.position());
      System.out.println(buf.limit());
      System.out.println(buf.capacity());
      
      //4. 利用 get() 读取缓冲区中的数据
      byte[] dst = new byte[buf.limit()];
      buf.get(dst);
      System.out.println(new String(dst, 0, dst.length));

      System.out.println("-----------------get()----------------");
      System.out.println(buf.position());
      System.out.println(buf.limit());
      System.out.println(buf.capacity());
      //5. rewind() : 可重复读
      buf.rewind();
      System.out.println("-----------------rewind()----------------");
      System.out.println(buf.position());
      System.out.println(buf.limit());
      System.out.println(buf.capacity());
      
      //6. clear() : 清空缓冲区. 但是缓冲区中的数据依然存在,但是处于“被遗忘”状态
      buf.clear();
      System.out.println("-----------------clear()----------------");
      System.out.println(buf.position());
      System.out.println(buf.limit());
      System.out.println(buf.capacity());
      System.out.println((char)buf.get());
      
   }

}

直接与非直接缓冲区

什么是直接内存与非直接内存

根据官方文档的描述:

byte byffer可以是两种类型,一种是基于直接内存(也就是非堆内存);另一种是非直接内存(也就是堆内存)。对于直接内存来说,JVM将会在IO操作上具有更高的性能,因为它直接作用于本地系统的IO操作。而非直接内存,也就是堆内存中的数据,如果要作IO操作,会先从本进程内存复制到直接内存,再利用本地IO处理。

从数据流的角度,非直接内存是下面这样的作用链:

代码语言:javascript
复制
本地IO-->直接内存-->非直接内存-->直接内存-->本地IO

而直接内存是:

代码语言:javascript
复制
本地IO-->直接内存-->本地IO

很明显,在做IO处理时,比如网络发送大量数据时,直接内存会具有更高的效率。直接内存使用allocateDirect创建,但是它比申请普通的堆内存需要耗费更高的性能。不过,这部分的数据是在JVM之外的,因此它不会占用应用的内存。所以呢,当你有很大的数据要缓存,并且它的生命周期又很长,那么就比较适合使用直接内存。只是一般来说,如果不是能带来很明显的性能提升,还是推荐直接使用堆内存。字节缓冲区是直接缓冲区还是非直接缓冲区可通过调用其 isDirect() 方法来确定。

使用场景

  • 1 有很大的数据需要存储,它的生命周期又很长
  • 2 适合频繁的IO操作,比如网络并发场景

直接内存和堆内存的区别

定义

直接内存:NIO的Buffer提供了一个可以不经过JVM内存直接访问系统物理内存的类——DirectBuffer。 DirectBuffer类继承自ByteBuffer,但和普通的ByteBuffer不同,普通的ByteBuffer仍在JVM堆上分配内存,其最大内存受到最大堆内存的限制;而DirectBuffer直接分配在物理内存中,并不占用堆空间,其可申请的最大内存受操作系统限制。

直接内存有时候也被称为堆外内存:

  • Java 开发者一般都知道堆内存,但却未必了解堆外内存。事实上,除了堆内存,Java 还可以使用堆外内存,也称直接内存(Direct Memory)。顾名思义,堆外内存是在 JVM Heap 之外分配的内存块,并不是 JVM 规范中定义的内存区域,堆外内存用得并不多,但十分重要。
  • 读者也许会有一个疑问:既然已经有堆内存,为什么还要用堆外内存呢?这主要是因为堆外内存在 IO 操作方面的优势,举一个例子:在通信中,将存在于堆内存中的数据 flush 到远程时,需要首先将堆内存中的数据拷贝到堆外内存中,然后再写入 Socket 中;如果直接将数据存到堆外内存中就可以避免上述拷贝操作,提升性能。类似的例子还有读写文件。

堆内存:Java 虚拟机具有一个堆,堆是运行时数据区域,所有类实例和数组的内存均从此处分配。堆是在 Java 虚拟机启动时创建的。对象的堆内存由称为垃圾回收器的自动内存管理系统回收。

区别和应用场景

  • 直接内存的读写操作比普通Buffer快,但它的创建、销毁比普通Buffer慢。
  • 因此直接内存使用于需要大内存空间且频繁访问的场合,不适用于频繁申请释放内存的场合。
在这里插入图片描述
在这里插入图片描述

4.5 NIO核心二:通道(Channel)

通道Channe概述

通道(Channel):由 java.nio.channels 包定义 的。Channel 表示 IO 源与目标打开的连接。 Channel 类似于传统的“流”。只不过 Channel 本身不能直接访问数据,Channel 只能与 Buffer 进行交互。

1、 NIO 的通道类似于流,但有些区别如下:

  • 通道可以同时进行读写,而流只能读或者只能写
  • 通道可以实现异步读写数据
  • 通道可以从缓冲读数据,也可以写数据到缓冲:

2、BIO 中的 stream 是单向的,例如 FileInputStream 对象只能进行读取数据的操作,而 NIO 中的通道(Channel) 是双向的,可以读操作,也可以写操作。

3、Channel 在 NIO 中是一个接口

代码语言:javascript
复制
public interface Channel extends Closeable{}

常用的Channel实现类

  • FileChannel:用于读取、写入、映射和操作文件的通道。
  • DatagramChannel:通过 UDP 读写网络中的数据通道。
  • SocketChannel:通过 TCP 读写网络中的数据。
  • ServerSocketChannel:可以监听新进来的 TCP 连接,对每一个新进来的连接都会创建一个 SocketChannel。 【ServerSocketChanne 类似 ServerSocket , SocketChannel 类似 Socket】

FileChannel 类

获取通道的一种方式是对支持通道的对象调用getChannel() 方法。支持通道的类如下:

  • FileInputStream
  • FileOutputStream
  • RandomAccessFile
  • DatagramSocket
  • Socket
  • ServerSocket 获取通道的其他方式是使用 Files 类的静态方法 newByteChannel() 获取字节通道。或者通过通道的静态方法 open() 打开并返回指定通道

FileChannel的常用方法

代码语言:javascript
复制
int read(ByteBuffer dst) 从 从  Channel 到 中读取数据到  ByteBuffer
long  read(ByteBuffer[] dsts) 将 将  Channel 到 中的数据“分散”到  ByteBuffer[]
int  write(ByteBuffer src) 将 将  ByteBuffer 到 中的数据写入到  Channel
long write(ByteBuffer[] srcs) 将 将  ByteBuffer[] 到 中的数据“聚集”到  Channel
long position() 返回此通道的文件位置
FileChannel position(long p) 设置此通道的文件位置
long size() 返回此通道的文件的当前大小
FileChannel truncate(long s) 将此通道的文件截取为给定大小
void force(boolean metaData) 强制将所有对此通道的文件更新写入到存储设备中

案例1-本地文件写数据

需求:使用前面学习后的 ByteBuffer(缓冲) 和 FileChannel(通道), 将 “你好,大忽悠” 写入到 data.txt 中.

代码语言:javascript
复制
public class ChannelTest {
    @Test
    public void write(){
        try {
            // 1、字节输出流通向目标文件
            FileOutputStream fos = new FileOutputStream("dhy.txt");
            // 2、得到字节输出流对应的通道Channel
            FileChannel channel = fos.getChannel();
            // 3、分配缓冲区
            ByteBuffer buffer = ByteBuffer.allocate(1024);
            buffer.put("你好,大忽悠!".getBytes());
            // 4、把缓冲区切换成写出模式
            buffer.flip();
            channel.write(buffer);
            channel.close();
            System.out.println("写数据到文件中!");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

相对路径是相对于当前模块而言

案例2-本地文件读数据

需求:使用前面学习后的 ByteBuffer(缓冲) 和 FileChannel(通道), 将 data01.txt 中的数据读入到程序,并显示在控制台屏幕

代码语言:javascript
复制
public class ChannelTest {

    @Test
    public void read() throws Exception {
        // 1、定义一个文件字节输入流与源文件接通
        FileInputStream is = new FileInputStream("data01.txt");
        //   FileOutputStream fos = new FileOutputStream()
        // 2、需要得到文件字节输入流的文件通道
        FileChannel channel = is.getChannel();
        // 3、定义一个缓冲区
        ByteBuffer buffer = ByteBuffer.allocate(1024);
        // 4、读取数据到缓冲区
        channel.read(buffer);
        buffer.flip();
        // 5、读取出缓冲区中的数据并输出即可
        String rs = new String(buffer.array(),0,buffer.remaining());
        System.out.println(rs);

    }

因为channel是双向的,既可以读也可以写,因此上面也可以通过文件输出流得到通道后,进行通道内数据的读取操作

案例3-使用Buffer完成文件复制

使用 FileChannel(通道) ,完成文件的拷贝。

代码语言:javascript
复制
@Test
public void copy() throws Exception {
    // 源文件
    File srcFile = new File("C:\\Users\\dlei\\Desktop\\BIO,NIO,AIO\\文件\\壁纸.jpg");
    File destFile = new File("C:\\Users\\dlei\\Desktop\\BIO,NIO,AIO\\文件\\壁纸new.jpg");
    // 得到一个字节字节输入流
    FileInputStream fis = new FileInputStream(srcFile);
    // 得到一个字节输出流
    FileOutputStream fos = new FileOutputStream(destFile);
    // 得到的是文件通道
    FileChannel isChannel = fis.getChannel();
    FileChannel osChannel = fos.getChannel();
    // 分配缓冲区
    ByteBuffer buffer = ByteBuffer.allocate(1024);
    while(true){
        // 必须先清空缓冲然后再写入数据到缓冲区
        buffer.clear();
        // 开始读取一次数据
        int flag = isChannel.read(buffer);
        if(flag == -1){
            break;
        }
        // 已经读取了数据 ,把缓冲区的模式切换成可读模式
        buffer.flip();
        // 把数据写出到
        osChannel.write(buffer);
    }
    isChannel.close();
    osChannel.close();
    System.out.println("复制完成!");
}

下面简化写法:

代码语言:javascript
复制
     try(FileInputStream inputStream=new FileInputStream("dst.txt");
         FileOutputStream outputStream=new FileOutputStream(UUID.randomUUID().toString().substring(0,5) +".txt");
         FileChannel in=inputStream.getChannel();
         FileChannel out=outputStream.getChannel();) {

         ByteBuffer buffer=ByteBuffer.allocate(1024);
         while(in.read(buffer)!=-1)
         {
             buffer.flip();
             out.write(buffer);
             buffer.clear();
         }

     } catch (FileNotFoundException e) {
        e.printStackTrace();
     } catch (IOException e) {
        e.printStackTrace();
     }

案例4-分散 (Scatter) 和聚集 (Gather)

分散读取(Scatter ):是指把Channel通道的数据读入到多个缓冲区中去

聚集写入(Gathering )是指将多个 Buffer 中的数据“聚集”到 Channel。

代码语言:javascript
复制
public class TestBuffer
{
    //分散和聚集
    @Test
    public void test() throws IOException{
        RandomAccessFile raf1 = new RandomAccessFile("1.txt", "rw");
        //1. 获取通道
        FileChannel channel1 = raf1.getChannel();

        //2. 分配指定大小的缓冲区
        ByteBuffer buf1 = ByteBuffer.allocate(100);
        ByteBuffer buf2 = ByteBuffer.allocate(1024);

        //3. 分散读取
        ByteBuffer[] bufs = {buf1, buf2};
        channel1.read(bufs);

        for (ByteBuffer byteBuffer : bufs)
        {
            System.out.println("反转前: ");
            System.out.println("position: "+byteBuffer.position());
            System.out.println("limit: "+byteBuffer.limit());
            System.out.println("capacity: "+byteBuffer.capacity());
            byteBuffer.flip();
            System.out.println("反转后: ");
            System.out.println("position: "+byteBuffer.position());
            System.out.println("limit: "+byteBuffer.limit());
            System.out.println("capacity: "+byteBuffer.capacity());
        }

        System.out.println(new String(bufs[0].array(), 0, bufs[0].limit()));
        System.out.println("-----------------");
        System.out.println(new String(bufs[1].array(), 0, bufs[1].limit()));

        //4. 聚集写入
        RandomAccessFile raf2 = new RandomAccessFile("2.txt", "rw");
        FileChannel channel2 = raf2.getChannel();

        channel2.write(bufs);
    }

}
在这里插入图片描述
在这里插入图片描述

案例5-transferFrom()

从目标通道中去复制原通道数据

代码语言:javascript
复制
@Test
public void test02() throws Exception {
    // 1、字节输入管道
    FileInputStream is = new FileInputStream("data01.txt");
    FileChannel isChannel = is.getChannel();
    // 2、字节输出流管道
    FileOutputStream fos = new FileOutputStream("data03.txt");
    FileChannel osChannel = fos.getChannel();
    // 3、复制
    osChannel.transferFrom(isChannel,isChannel.position(),isChannel.size());
    isChannel.close();
    osChannel.close();
}

案例6-transferTo()

把原通道数据复制到目标通道

代码语言:javascript
复制
@Test
public void test02() throws Exception {
    // 1、字节输入管道
    FileInputStream is = new FileInputStream("data01.txt");
    FileChannel isChannel = is.getChannel();
    // 2、字节输出流管道
    FileOutputStream fos = new FileOutputStream("data04.txt");
    FileChannel osChannel = fos.getChannel();
    // 3、复制
    isChannel.transferTo(isChannel.position() , isChannel.size() , osChannel);
    isChannel.close();
    osChannel.close();
}

案例7map()内存映射文件

MappedByteBuffer map(FileChannel.MapMode mode,long position,long size)方法的作用是将此通道的文件区域直接映射到内存中。

1)mode:根据只读、读取/写入或专用(写入时复制)来映射文件,分别为FileChannel.MapMode类中所定义的READ_ONLY、READ_WRITE和PRIVATE; 2)position:文件中的位置,映射区域从此位置开始;必须为非负数。 3)size:要映射的区域大小;必须为非负数且不大于Integer.MAX_VALUE。

可以通过下列3种模式将文件区域映射到内存中。

1)只读:试图修改得到的缓冲区将导致抛出ReadOnlyBufferException异常。(MapMode.READ_ONLY

2)读取/写入:对得到的缓冲区的更改最终将传播到文件;该更改对映射到同一文件的其他程序不一定是可见的。(MapMode.READ_WRITE

3)专用:对得到的缓冲区的更改不会传播到文件,并且该更改对映射到同一文件的其他程序也不是可见的;相反,会创建缓冲区已修改部分的专用副本。(MapMode.PRIVATE

总结:

1、对于只读映射关系,此通道必须可以进行读取操作;对于读取/写入或专用映射关系,此通道必须可以进行读取和写入操作。

2、此方法返回的已映射字节缓冲区位置为零,限制和容量为size;其标记是不确定的。在缓冲区本身被作为垃圾回收之前,该缓冲区及其表示的映射关系都是有效的。

3、映射关系一经创建,就不再依赖于创建它时所用的文件通道。特别是关闭该通道对映射关系的有效性没有任何影响。

4、对于大多数操作系统而言,与通过普通的read()和write()方法读取或写入数千字节的数据相比,将文件映射到内存中开销更大。从性能的观点来看,通常将相对较大的文件映射到内存中才是值得的。

MappedByteBuffer的简单介绍:

它是直接字节缓冲区,其内容是文件的内存映射区域。映射的字节缓冲区是通过FileChannel.map()方法创建的。此类用特定于内存映射文件区域的操作扩展ByteBuffer类。

代码语言:javascript
复制
public abstract class MappedByteBuffer extends ByteBuffer

作为ByteBuffer的子类,除了具有父类的方法外,还新增了

  • force()将此缓冲区所做的内容更改强制写入包含映射文件的存储设备中。
  • load()将此缓冲区内容加载到物理内存中。
  • isLoaded()判断次缓冲区的内容是否位于物理内存中。

FileChannel类或MappedByteBuffer类对文件进行操作时,在大部分情况下,它们的效率并不比使用InputStream或OutputStream高很多,这是因为NIO的出现是为了解决操作I/O线程阻塞的问题,使用NIO就把线程变成了非阻塞,这样就提高了运行效率。

NIO真正的优势:非阻塞。

使用演示:

代码语言:javascript
复制
    @Test
    public void userMap() throws Exception
    {
        //源文件通道
        FileChannel fileChannel = new FileInputStream("1.txt").getChannel();
        //以当前模块为相对路径
        RandomAccessFile desc=new RandomAccessFile("desc.txt","rw");
        //将1.txt映射到直接字节缓冲区
        MappedByteBuffer mappedByteBuffer = fileChannel.map(FileChannel.MapMode.READ_ONLY, 0, fileChannel.size());
        //将缓冲区数据输出到目的文件中
        desc.getChannel().write(mappedByteBuffer);
        //转换读写模式,将缓冲区内的数据打印到控制台上
        mappedByteBuffer.flip();
        //通过字符集对象进行解码,得到对应解码后的字符缓冲区
        Charset charset=Charset.defaultCharset();
        CharBuffer charBuffer = charset.decode(mappedByteBuffer);
        System.out.println(charBuffer);
    }
在这里插入图片描述
在这里插入图片描述

4.6 NIO核心三:选择器(Selector)

选择器(Selector)概述

选择器(Selector) 是 SelectableChannle 对象的多路复用器,Selector 可以同时监控多个 SelectableChannel 的 IO 状况,也就是说,利用 Selector可使一个单独的线程管理多个 Channel。Selector 是非阻塞 IO 的核心

请添加图片描述
请添加图片描述
  • Java 的 NIO,用非阻塞的 IO 方式。可以用一个线程,处理多个的客户端连接,就会使用到 Selector(选择器)
  • Selector 能够检测多个注册的通道上是否有事件发生(注意:多个 Channel 以事件的方式可以注册到同一个 Selector),如果有事件发生,便获取事件然后针对每个事件进行相应的处理。这样就可以只用一个单线程去管 理多个通道,也就是管理多个连接和请求。
  • 只有在 连接/通道 真正有读写事件发生时,才会进行读写,就大大地减少了系统开销,并且不必为每个连接都 创建一个线程,不用去维护多个线程
  • 避免了多线程之间的上下文切换导致的开销

选 择 器(Selector)的应用

创建 Selector :通过调用 Selector.open() 方法创建一个 Selector。

代码语言:javascript
复制
Selector selector = Selector.open();

向选择器注册通道:SelectableChannel.register(Selector sel, int ops)

代码语言:javascript
复制
//1. 获取通道
ServerSocketChannel ssChannel = ServerSocketChannel.open();
//2. 切换非阻塞模式
ssChannel.configureBlocking(false);
//3. 绑定连接
ssChannel.bind(new InetSocketAddress(9898));
//4. 获取选择器
Selector selector = Selector.open();
//5. 将通道注册到选择器上, 并且指定“监听接收事件”
ssChannel.register(selector, SelectionKey.OP_ACCEPT);

FileChannel是阻塞的,不能够设置为非阻塞,因此不能注册到选择器上面

当调用 register(Selector sel, int ops) 将通道注册选择器时,选择器对通道的监听事件,需要通过第二个参数 ops 指定。可以监听的事件类型(用 可使用 SelectionKey 的四个常量 表示):

  • 读 : SelectionKey.OP_READ (1)
  • 写 : SelectionKey.OP_WRITE (4)
  • 连接 : SelectionKey.OP_CONNECT (8)
  • 接收 : SelectionKey.OP_ACCEPT (16)
  • 若注册时不止监听一个事件,则可以使用“位或”操作符连接。
代码语言:javascript
复制
int interestSet = SelectionKey.OP_READ|SelectionKey.OP_WRITE 

4.7 NIO非阻塞式网络通信原理分析

Selector 示意图和特点说明

Selector可以实现: 一个 I/O 线程可以并发处理 N 个客户端连接和读写操作,这从根本上解决了传统同步阻塞 I/O 一连接一线程模型,架构的性能、弹性伸缩能力和可靠性都得到了极大的提升。

请添加图片描述
请添加图片描述

服务端流程

1、当客户端连接服务端时,服务端会通过 ServerSocketChannel 得到 SocketChannel:1. 获取通道

代码语言:javascript
复制
 ServerSocketChannel ssChannel = ServerSocketChannel.open();

2、切换非阻塞模式

代码语言:javascript
复制
ssChannel.configureBlocking(false);

3、绑定连接

代码语言:javascript
复制
ssChannel.bind(new InetSocketAddress(9999));

4、 获取选择器

代码语言:javascript
复制
Selector selector = Selector.open();

5、 将通道注册到选择器上, 并且指定“监听接收事件”

代码语言:javascript
复制
ssChannel.register(selector, SelectionKey.OP_ACCEPT);

6.轮询式的获取选择器上已经“准备就绪”的事件

代码语言:javascript
复制
//轮询式的获取选择器上已经“准备就绪”的事件
 while (selector.select() > 0) {
        System.out.println("轮一轮");
        //7. 获取当前选择器中所有注册的“选择键(已就绪的监听事件)”
        Iterator<SelectionKey> it = selector.selectedKeys().iterator();
        while (it.hasNext()) {
            //8. 获取准备“就绪”的是事件
            SelectionKey sk = it.next();
            //9. 判断具体是什么事件准备就绪
            if (sk.isAcceptable()) {
                //10. 若“接收就绪”,获取客户端连接
                SocketChannel sChannel = ssChannel.accept();
                //11. 切换非阻塞模式
                sChannel.configureBlocking(false);
                //12. 将该通道注册到选择器上
                sChannel.register(selector, SelectionKey.OP_READ);
            } else if (sk.isReadable()) {
                //13. 获取当前选择器上“读就绪”状态的通道
                SocketChannel sChannel = (SocketChannel) sk.channel();
                //14. 读取数据
                ByteBuffer buf = ByteBuffer.allocate(1024);
                int len = 0;
                while ((len = sChannel.read(buf)) > 0) {
                    buf.flip();
                    System.out.println(new String(buf.array(), 0, len));
                    buf.clear();
                }
            }
            //15. 取消选择键 SelectionKey
            it.remove();
        }
    }
}

为什么最后要从集合中移除选择键

每个Selector对象都需要维护以下三个集合:

  • 1.已注册的键的集合,keys()方法返回这个已注册的键的集合,这个集合不能修改
  • 2.已选择的键的集合,selectedKeys()方法返回,该集合中的每个成员都是相关的通道被选择器判断已经准备好的,并且包含了键的interest集合中的操作,键可以从集合中移除,不能添加.
  • 3.已取消的键的集合,这个集合包含了调用过cancel()方法的键

这里我们移除的是已选择键的集合,因为如果处理完了一个已选择键,而不进行移除,那么下一轮循环这个键依然存在,就会造成重复处理

客户端流程

  1. 获取通道
代码语言:javascript
复制
 SocketChannel sChannel = SocketChannel.open(new InetSocketAddress("127.0.0.1", 9999));
  1. 切换非阻塞模式
代码语言:javascript
复制
 sChannel.configureBlocking(false);
  1. 分配指定大小的缓冲区
代码语言:javascript
复制
  ByteBuffer buf = ByteBuffer.allocate(1024);
  1. 发送数据给服务端
代码语言:javascript
复制
Scanner scan = new Scanner(System.in);
while(scan.hasNext()){
	String str = scan.nextLine();
	buf.put((new SimpleDateFormat("yyyy/MM/dd HH:mm:ss").format(System.currentTimeMillis())
			+ "\n" + str).getBytes());
	buf.flip();
	sChannel.write(buf);
	buf.clear();
}
//关闭通道
sChannel.close();

4.8 NIO非阻塞式网络通信入门案例

需求:服务端接收客户端的连接请求,并接收多个客户端发送过来的事件。

代码案例

客户端:

代码语言:javascript
复制
/**
  客户端
 */
public class Client {

	public static void main(String[] args) throws Exception {
		//1. 获取通道
		//写法一:
		//SocketChannel sChannel = SocketChannel.open(new InetSocketAddress("127.0.0.1", 9999));
		//写法二:
		SocketChannel sChannel=SocketChannel.open();
		//规定客户端的端口--一定要在连接服务器之前规定,否则会随机分配一个端口,再bind就会抛出已绑定的异常
		sChannel.bind(new InetSocketAddress(8082));
		//连接服务器
		sChannel.connect(new InetSocketAddress("127.0.0.1", 9999));
		//2. 切换非阻塞模式
		sChannel.configureBlocking(false);
		//3. 分配指定大小的缓冲区
		ByteBuffer buf = ByteBuffer.allocate(1024);
		//4. 发送数据给服务端
		Scanner scan = new Scanner(System.in);
		while(scan.hasNext()){
			String str = scan.nextLine();
			buf.put((new SimpleDateFormat("yyyy/MM/dd HH:mm:ss").format(System.currentTimeMillis())
					+ "\n" + str).getBytes());
			buf.flip();
			sChannel.write(buf);
			buf.clear();
		}
		//5. 关闭通道
		sChannel.close();
	}
}

服务器:

代码语言:javascript
复制
/**
 服务端
 */
public class Server {
    public static void main(String[] args) throws IOException {
        //1. 获取通道
        ServerSocketChannel ssChannel = ServerSocketChannel.open();
        //2. 切换非阻塞模式
        ssChannel.configureBlocking(false);
        //3. 绑定连接
        ssChannel.bind(new InetSocketAddress(9999));
        //4. 获取选择器
        Selector selector = Selector.open();
        //5. 将通道注册到选择器上, 并且指定“监听接收事件”
        ssChannel.register(selector, SelectionKey.OP_ACCEPT);
        //6. 轮询式的获取选择器上已经“准备就绪”的事件
        while (selector.select() > 0) {
            //7. 获取当前选择器中所有注册的“选择键(已就绪的监听事件)”
            Iterator<SelectionKey> it = selector.selectedKeys().iterator();
            while (it.hasNext()) {
                //8. 获取准备“就绪”的是事件
                SelectionKey sk = it.next();
                //9. 判断具体是什么事件准备就绪
                if (sk.isAcceptable())
                {
                    //10. 若“接收就绪”,获取客户端连接
                    SocketChannel sChannel = ssChannel.accept();
                    InetSocketAddress remoteAddress = (InetSocketAddress)sChannel.getRemoteAddress();
                    InetSocketAddress localAddress = (InetSocketAddress)sChannel.getLocalAddress();
                    System.out.println("客户端连接事件: ");
                    System.out.println("客户端的HostName: "+remoteAddress.getHostName());
                    System.out.println("客户端的HostString: "+remoteAddress.getHostString());
                    System.out.println("客户端的Address: "+remoteAddress.getAddress());
                    System.out.println("客户端的Port: "+remoteAddress.getPort());
                    //11. 切换非阻塞模式
                    sChannel.configureBlocking(false);
                    //12. 将该通道注册到选择器上
                    sChannel.register(selector, SelectionKey.OP_READ);
                } else if (sk.isReadable()) {
                    System.out.println("客户端发送数据事件: ");
                    //13. 获取当前选择器上“读就绪”状态的通道
                    SocketChannel sChannel = (SocketChannel) sk.channel();
                    //14. 读取数据
                    ByteBuffer buf = ByteBuffer.allocate(1024);
                    int len = 0;
                    while ((len = sChannel.read(buf)) > 0) {
                        buf.flip();
                        System.out.println(new String(buf.array(), 0, len));
                        buf.clear();
                    }
                }
                //15. 取消选择键 SelectionKey
                it.remove();
            }
        }
    }
}

输出:

代码语言:javascript
复制
客户端连接事件: 
客户端的HostName: config-3344.com
客户端的HostString: config-3344.com
客户端的Address: config-3344.com/127.0.0.1
客户端的Port: 8081
客户端连接事件: 
客户端的HostName: config-3344.com
客户端的HostString: config-3344.com
客户端的Address: config-3344.com/127.0.0.1
客户端的Port: 8082
客户端发送数据事件: 
2022/01/15 22:30:49
你好
客户端发送数据事件: 
2022/01/15 22:30:54
你好

4.9 NIO 网络编程应用实例-群聊系统

目标

需求:进一步理解 NIO 非阻塞网络编程机制,实现多人群聊

  • 编写一个 NIO 群聊系统,实现客户端与客户端的通信需求(非阻塞)
  • 服务器端:可以监测用户上线,离线,并实现消息转发功能
  • 客户端:通过 channel 可以无阻塞发送消息给其它所有客户端用户,同时可以接受其它客户端用户通过服务端转发来的消息

服务端代码实现

代码语言:javascript
复制
package dhy.com;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.*;
import java.util.Iterator;

public class Server {
    //定义属性
    private Selector selector;
    private ServerSocketChannel ssChannel;
    private static final int PORT = 80;
    //构造器
    //初始化工作
    public Server() {
        try {
            // 1、获取通道
            ssChannel = ServerSocketChannel.open();
            // 2、切换为非阻塞模式
            ssChannel.configureBlocking(false);
            // 3、绑定连接的端口
            ssChannel.bind(new InetSocketAddress(PORT));
            // 4、获取选择器Selector
            selector = Selector.open();
            // 5、将通道都注册到选择器上去,并且开始指定监听接收事件
            ssChannel.register(selector , SelectionKey.OP_ACCEPT);
        }catch (IOException e) {
            e.printStackTrace();
        }
    }

    //监听
    public void listen() {
        System.out.println("监听线程: " + Thread.currentThread().getName());
        try {
            //select在没有事件触发的情况下,会阻塞住
            while (selector.select() > 0){
                System.out.println("开始一轮事件处理~~~");
                // 7、获取选择器中的所有注册的通道中已经就绪好的事件
                Iterator<SelectionKey> it = selector.selectedKeys().iterator();
                // 8、开始遍历这些准备好的事件
                while (it.hasNext()){
                    // 提取当前这个事件
                    SelectionKey sk = it.next();
                    // 9、判断这个事件具体是什么
                    if(sk.isAcceptable()){
                        // 10、直接获取当前接入的客户端通道
                        SocketChannel schannel = ssChannel.accept();
                        // 11 、切换成非阻塞模式
                        schannel.configureBlocking(false);
                        // 12、将本客户端通道注册到选择器
                        System.out.println(schannel.getRemoteAddress() + " 上线 ");
                        schannel.register(selector , SelectionKey.OP_READ);
                        //提示
                    }
                    //当远程客户端断开连接的时候,也会触发OP_READ事件
                    else if(sk.isReadable()){
                        //处理读 (专门写方法..)
                        readData(sk);
                    }

                    it.remove(); // 处理完毕之后需要移除当前事件
                }
            }
        }catch (Exception e) {
            e.printStackTrace();
        }finally {
            //发生异常处理....
            System.out.println("监听结束....");
        }
    }

    //读取客户端消息
    private void readData(SelectionKey key) {
        //取到关联的channle
        SocketChannel channel = null;
        try {
           //得到channel
            channel = (SocketChannel) key.channel();
            //创建buffer
            ByteBuffer buffer = ByteBuffer.allocate(1024);
            //count为读取到的字节数
            int count = channel.read(buffer);
            //根据count的值做处理
            if(count > 0) {
                //把缓存区的数据转成字符串
                String msg = new String(buffer.array(),0,buffer.remaining());
                //输出该消息
                System.out.println("form 客户端: " + msg);
                //向其它的客户端转发消息(去掉自己), 专门写一个方法来处理
                sendInfoToOtherClients(msg, channel);
            }
        }catch (IOException e) {
            try {
                System.out.println(channel.getRemoteAddress() + " 离线了..");
                e.printStackTrace();
                //取消注册
                key.cancel();
                //关闭通道
                channel.close();
            }catch (IOException e2) {
                e2.printStackTrace();;
            }
        }
    }

    //转发消息给其它客户(通道)
    private void sendInfoToOtherClients(String msg, SocketChannel self ) throws  IOException{
        System.out.println("服务器转发消息中...");
        System.out.println("服务器转发数据给客户端线程: " + Thread.currentThread().getName());
        //遍历 所有注册到selector 上的 SocketChannel,并排除 self
        for(SelectionKey key: selector.keys()) {
            //通过 key  取出对应的 SocketChannel
            Channel targetChannel = key.channel();
            //排除自己
            if(targetChannel instanceof  SocketChannel && targetChannel != self) {
                //转型
                SocketChannel dest = (SocketChannel)targetChannel;
                //将msg 存储到buffer
                ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
                //将buffer 的数据写入 通道
                dest.write(buffer);
            }
        }
    }

    public static void main(String[] args) {
        //创建服务器对象
        Server groupChatServer = new Server();
        groupChatServer.listen();
    }
}

客户端代码实现

代码语言:javascript
复制
package dhy.com;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Scanner;

public class Client {
    //定义相关的属性
    private final String HOST = "127.0.0.1"; // 服务器的ip
    private final int PORT = 80; //服务器端口
    private Selector selector;
    private SocketChannel socketChannel;
    private String username;

    //构造器, 完成初始化工作
    public Client() throws IOException {

        selector = Selector.open();
        //连接服务器
        socketChannel = SocketChannel.open(new InetSocketAddress("127.0.0.1", PORT));
        //设置非阻塞
        socketChannel.configureBlocking(false);
        //将channel 注册到selector
        socketChannel.register(selector, SelectionKey.OP_READ);
        //得到username
        username = socketChannel.getLocalAddress().toString().substring(1);
        System.out.println(username + " is ok...");

    }

    //向服务器发送消息
    public void sendInfo(String info) {
        info = username + " 说:" + info;
        try {
            socketChannel.write(ByteBuffer.wrap(info.getBytes()));
        }catch (IOException e) {
            e.printStackTrace();
        }
    }

    //读取从服务器端回复的消息
    public void readInfo() {
        try {
            //感兴趣的事件触发
            while(selector.select()>0)
            {
                Iterator<SelectionKey> iterator = selector.selectedKeys().iterator();
                while (iterator.hasNext()) {

                    SelectionKey key = iterator.next();
                    if(key.isReadable()) {
                        //得到相关的通道
                        SocketChannel sc = (SocketChannel) key.channel();
                        //得到一个Buffer
                        ByteBuffer buffer = ByteBuffer.allocate(1024);
                        //读取
                        sc.read(buffer);
                        //把读到的缓冲区的数据转成字符串
                        String msg = new String(buffer.array());
                        System.out.println(msg.trim());
                    }
                }
                iterator.remove(); //删除当前的selectionKey, 防止重复操作
            }
        }catch (Exception e) {
            e.printStackTrace();
        }
    }

    public static void main(String[] args) throws Exception {
        //启动我们客户端
        Client chatClient = new Client();
        //启动一个线程,读取从服务器发送数据
        new Thread() {
            @Override
            public void run() {
                    chatClient.readInfo();
            }
        }.start();

        //发送数据给服务器端
        Scanner scanner = new Scanner(System.in);

        while (scanner.hasNextLine()) {
            String s = scanner.nextLine();
            chatClient.sendInfo(s);
        }
    }
}

第五章 JAVA AIO深入剖析

5.1 AIO编程

  • Java AIO(NIO.2) : 异步非阻塞,服务器实现模式为一个有效请求一个线程,客户端的I/O请求都是由OS先完成了再通知服务器应用去启动线程进行处理。
代码语言:javascript
复制
AIO
异步非阻塞,基于NIO的,可以称之为NIO2.0
    BIO                   NIO                              AIO        
Socket                SocketChannel                    AsynchronousSocketChannel
ServerSocket          ServerSocketChannel	       AsynchronousServerSocketChannel

与NIO不同,当进行读写操作时,只须直接调用API的read或write方法即可, 这两种方法均为异步的,对于读操作而言,当有流可读取时,操作系统会将可读的流传入read方法的缓冲区,对于写操作而言,当操作系统将write方法传递的流写入完毕时,操作系统主动通知应用程序

即可以理解为,read/write方法都是异步的,完成后会主动调用回调函数。在JDK1.7中,这部分内容被称作NIO.2,主要在Java.nio.channels包下增加了下面四个异步通道:

代码语言:javascript
复制
	AsynchronousSocketChannel
	AsynchronousServerSocketChannel
	AsynchronousFileChannel
	AsynchronousDatagramChannel

第六章 BIO,NIO,AIO课程总结

BIO、NIO、AIO:

  • Java BIO : 同步并阻塞,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,当然可以通过线程池机制改善。
  • Java NIO : 同步非阻塞,服务器实现模式为一个请求一个线程,即客户端发送的连接请求都会注册到多路复用器上,多路复用器轮询到连接有I/O请求时才启动一个线程进行处理。
  • Java AIO(NIO.2) : 异步非阻塞,服务器实现模式为一个有效请求一个线程,客户端的I/O请求都是由OS先完成了再通知服务器应用去启动线程进行处理。

BIO、NIO、AIO适用场景分析:

  • BIO方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高,并发局限于应用中,JDK1.4以前的唯一选择,但程序直观简单易理解。
  • NIO方式适用于连接数目多且连接比较短(轻操作)的架构,比如聊天服务器,并发局限于应用中,编程比较复杂,JDK1.4开始支持。
  • AIO方式使用于连接数目多且连接比较长(重操作)的架构,比如相册服务器,充分调用OS参与并发操作,编程比较复杂,JDK7开始支持。Netty!
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022-01-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • NIO~~
  • 第四章 JAVA NIO深入剖析
    • 4.1 Java NIO 基本介绍
      • 4.2 NIO 和 BIO 的比较
        • 4.3 NIO 三大核心原理示意图
          • Buffer缓冲区
          • Channel(通道)
          • Selector选择器
        • 4.4 NIO核心一:缓冲区(Buffer)
          • 缓冲区(Buffer)
          • Buffer 类及其子类
          • 缓冲区的基本属性
          • Buffer常见方法
          • 缓冲区的数据操作
          • 案例演示
          • 直接与非直接缓冲区
          • 直接内存和堆内存的区别
        • 4.5 NIO核心二:通道(Channel)
          • 通道Channe概述
          • 常用的Channel实现类
          • FileChannel 类
          • FileChannel的常用方法
          • 案例1-本地文件写数据
          • 案例2-本地文件读数据
          • 案例3-使用Buffer完成文件复制
          • 案例4-分散 (Scatter) 和聚集 (Gather)
          • 案例5-transferFrom()
          • 案例6-transferTo()
          • 案例7map()内存映射文件
        • 4.6 NIO核心三:选择器(Selector)
          • 选择器(Selector)概述
          • 选 择 器(Selector)的应用
        • 4.7 NIO非阻塞式网络通信原理分析
          • Selector 示意图和特点说明
          • 服务端流程
          • 客户端流程
        • 4.8 NIO非阻塞式网络通信入门案例
          • 代码案例
        • 4.9 NIO 网络编程应用实例-群聊系统
          • 目标
          • 服务端代码实现
          • 客户端代码实现
      • 第五章 JAVA AIO深入剖析
        • 5.1 AIO编程
        • 第六章 BIO,NIO,AIO课程总结
        相关产品与服务
        弹性伸缩
        弹性伸缩(Auto Scaling,AS)为您提供高效管理计算资源的策略。您可设定时间周期性地执行管理策略或创建实时监控策略,来管理 CVM 实例数量,并完成对实例的环境部署,保证业务平稳顺利运行。在需求高峰时,弹性伸缩自动增加 CVM 实例数量,以保证性能不受影响;当需求较低时,则会减少 CVM 实例数量以降低成本。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档