若随机变量X 服从二项分布,即X\sim B(n,p) , 则有P(X=k)=C_n^kp^k(1-p)^{n-k} ,其均值和方差分别是
之前学二项分布的时候看到它的期望和方差觉得形式很简单,就没怎么细看推导过程。但是自己去推导的时候发现也没那么简单。。。本文做个总结
二项分布期望
整个推导过程如下
- 第1到第3行应该很好理解,不过需要注意的是第3行的下标从 k=1 开始了,因为k=0 时值为0所以省略了。
- 第4行:把排列组合展开了
- 第5行:令q=1-p
- 第6行:这是整个推导过程magic所在。为更加方便理解,对于式(6)右边那一坨
,我们可以做一下换元,即令z=k-1,m=n-1 ,注意原式的k取值范围是k\in[1,n] ,那么z的取值范围应该就是z\in[0,n-1] ,所以换元后式(6)变形得到\sum_{z=0}^{m}\frac{m!}{z!(m-z)!}p^zq^{m-z} ,这就是二项分布概率累加,其结果为1。
二项分布方差
D(X)=E[X-EX]^2=E[X^2-2XEX+(EX^2)]注意EX 可视为一个常数,所以E[2XEX]=2EX E[X]=2(EX)^2 ,同理E[(EX)^2]=(EX)^2 ,综上 D(X)=EX^2-(EX)^2 下面我们只需要在计算EX^2 即可,推导过程如下:
所以DX=EX^2-(EX)^2=n(n-1) p^{2}+np-(np)^2=np(1-p)
参考