前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【深度学习】PyTorch训练一个CNN分类器

【深度学习】PyTorch训练一个CNN分类器

作者头像
统计学家
发布2022-05-24 15:36:21
5530
发布2022-05-24 15:36:21
举报

前言

原文翻译自:Deep Learning with PyTorch: A 60 Minute Blitz

翻译:林不清(https://www.zhihu.com/people/lu-guo-92-42-88)

目录

训练一个分类器

你已经学会如何去定义一个神经网络,计算损失值和更新网络的权重。

你现在可能在思考:数据哪里来呢?

关于数据

通常,当你处理图像,文本,音频和视频数据时,你可以使用标准的Python包来加载数据到一个numpy数组中.然后把这个数组转换成torch.*Tensor

  • 对于图像,有诸如Pillow,OpenCV包等非常实用
  • 对于音频,有诸如scipy和librosa包
  • 对于文本,可以用原始Python和Cython来加载,或者使用NLTK和SpaCy 对于视觉,我们创建了一个torchvision包,包含常见数据集的数据加载,比如Imagenet,CIFAR10,MNIST等,和图像转换器,也就是torchvision.datasetstorch.utils.data.DataLoader

这提供了巨大的便利,也避免了代码的重复。

在这个教程中,我们使用CIFAR10数据集,它有如下10个类别:’airplane’,’automobile’,’bird’,’cat’,’deer’,’dog’,’frog’,’horse’,’ship’,’truck’。这个数据集中的图像大小为3*32*32,即,3通道,32*32像素。

训练一个图像分类器

我们将按照下列顺序进行:

  • 使用torchvision加载和归一化CIFAR10训练集和测试集.
  • 定义一个卷积神经网络
  • 定义损失函数
  • 在训练集上训练网络
  • 在测试集上测试网络

1. 加载和归一化CIFAR10

使用torchvision加载CIFAR10是非常容易的。

%matplotlib inline
import torch
import torchvision
import torchvision.transforms as transforms

torchvision的输出是[0,1]的PILImage图像,我们把它转换为归一化范围为[-1, 1]的张量。

注意

如果在Windows上运行时出现BrokenPipeError,尝试将torch.utils.data.DataLoader()的num_worker设置为0。

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
#这个过程有点慢,会下载大约340mb图片数据。

我们展示一些有趣的训练图像。

import matplotlib.pyplot as plt
import numpy as np

# functions to show an image


def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

2. 定义一个卷积神经网络

从之前的神经网络一节复制神经网络代码,并修改为接受3通道图像取代之前的接受单通道图像。

import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


net = Net()

3. 定义损失函数和优化器

我们使用交叉熵作为损失函数,使用带动量的随机梯度下降。

import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

4. 训练网络

这是开始有趣的时刻,我们只需在数据迭代器上循环,把数据输入给网络,并优化。

for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

保存一下我们的训练模型

PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)

点击这里查看关于保存模型的详细介绍

5. 在测试集上测试网络

我们在整个训练集上训练了两次网络,但是我们还需要检查网络是否从数据集中学习到东西。

我们通过预测神经网络输出的类别标签并根据实际情况进行检测,如果预测正确,我们把该样本添加到正确预测列表。

第一步,显示测试集中的图片一遍熟悉图片内容。

dataiter = iter(testloader)
images, labels = dataiter.next()

# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))

接下来,让我们重新加载我们保存的模型(注意:保存和重新加载模型在这里不是必要的,我们只是为了说明如何这样做):

net = Net()
net.load_state_dict(torch.load(PATH))

现在我们来看看神经网络认为以上图片是什么?

outputs = net(images)

输出是10个标签的概率。一个类别的概率越大,神经网络越认为他是这个类别。所以让我们得到最高概率的标签。

_, predicted = torch.max(outputs, 1)

print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
                              for j in range(4)))

这结果看起来非常的好。

接下来让我们看看网络在整个测试集上的结果如何。

correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

结果看起来好于偶然,偶然的正确率为10%,似乎网络学习到了一些东西。

那在什么类上预测较好,什么类预测结果不好呢?

class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        c = (predicted == labels).squeeze()
        for i in range(4):
            label = labels[i]
            class_correct[label] += c[i].item()
            class_total[label] += 1


for i in range(10):
    print('Accuracy of %5s : %2d %%' % (
        classes[i], 100 * class_correct[i] / class_total[i]))

接下来干什么?

我们如何在GPU上运行神经网络呢?

在GPU上训练

你是如何把一个Tensor转换GPU上,你就如何把一个神经网络移动到GPU上训练。这个操作会递归遍历有所模块,并将其参数和缓冲区转换为CUDA张量。

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Assume that we are on a CUDA machine, then this should print a CUDA device:
#假设我们有一台CUDA的机器,这个操作将显示CUDA设备。
print(device)

接下来假设我们有一台CUDA的机器,然后这些方法将递归遍历所有模块并将其参数和缓冲区转换为CUDA张量:

net.to(device)

请记住,你也必须在每一步中把你的输入和目标值转换到GPU上:

inputs, labels = inputs.to(device), labels.to(device)

为什么我们没注意到GPU的速度提升很多?那是因为网络非常的小。

实践:

尝试增加你的网络的宽度(第一个nn.Conv2d的第2个参数, 第二个nn.Conv2d的第一个参数,他们需要是相同的数字),看看你得到了什么样的加速。

实现的目标:
  • 深入了解了PyTorch的张量库和神经网络
  • 训练了一个小网络来分类图片

在多GPU上训练

如果你希望使用所有GPU来更大的加快速度,请查看选读:[数据并行]:(https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html)

接下来做什么?

  • 训练神经网络玩电子游戏
  • 在ImageNet上训练最好的ResNet
  • 使用对抗生成网络来训练一个人脸生成器
  • 使用LSTM网络训练一个字符级的语言模型
  • 更多示例
  • 更多教程
  • 在论坛上讨论PyTorch
  • 在Slack上与其他用户聊天
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2022-04-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习与统计学 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 目录
  • 关于数据
  • 训练一个图像分类器
    • 1. 加载和归一化CIFAR10
      • 2. 定义一个卷积神经网络
        • 3. 定义损失函数和优化器
          • 4. 训练网络
            • 5. 在测试集上测试网络
              • 在GPU上训练
                • 在多GPU上训练
                  • 接下来做什么?
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档