前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >C++17 在业务代码中最好用的十个特性

C++17 在业务代码中最好用的十个特性

作者头像
腾讯技术工程官方号
发布2022-05-25 11:10:05
2.5K0
发布2022-05-25 11:10:05
举报
文章被收录于专栏:腾讯技术工程官方号的专栏

作者:jinshang,腾讯 WXG 后台开发工程师

自从步入现代 C++时代开始,C++语言标准形成了三年一个版本的惯例:C++11 标志着现代 C++的开端,C++14 在 11 的基础上查缺补漏,并未加入许多新特性,而 C++17 作为 C++11 后的第一个大版本,标志着现代 C++逐渐走向成熟。WXG 编译器升级到 gcc7.5 已有一段时间,笔者所在项目组也已经将全部代码升级到 C++17。在使用了 C++17 一年多之后,笔者总结了 C++17 在业务代码中最好用的十个特性。

注 1:本文只包含 wxg 的 gcc7.5 支持的特性,Execution Policy, File System等暂不支持的特性不包含在内。

注 2:本文只包含应用于业务逻辑的特性,Fold Expression, Mathematical Special Functions等适用于元编程和科学计算的特性并不包含。

笔者将这些特性大体上分为三类:语法糖、性能提升和类型系统。

语法糖

这里所说的语法糖,并不是严格意义上编程语言级别的语法糖,还包括一些能让代码更简洁更具有可读性的函数和库:

结构化绑定

c++17 最便利的语法糖当属结构化绑定。结构化绑定是指将 array、tuple 或 struct 的成员绑定到一组变量*上的语法,最常用的场景是在遍历 map/unordered_map 时不用再声明一个中间变量了:

代码语言:javascript
复制
// pre c++17
for(const auto& kv: map){
  const auto& key = kv.first;
  const auto& value = kv.second;
  // ...
}

// c++17
for(const auto& [key, value]: map){
  // ...
}

*: 严格来说,结构化绑定的结果并不是变量,c++标准称之为名字/别名,这也导致它们不允许被 lambda 捕获,但是 gcc 并没有遵循 c++标准,所以以下代码在 gcc 可以编译,clang 则编译不过

代码语言:javascript
复制
for(const auto& [key, value]: map){
    [&key, &value]{
        std::cout << key << ": " << value << std::endl;
    }();
}

在 clang 环境下,可以在 lambda 表达式捕获时显式引入一个引用变量通过编译

代码语言:javascript
复制
for(const auto& [key, value]: map){
    [&key = key, &value = value]{
        std::cout << key << ": " << value << std::endl;
    }();
}

另外这条限制在 c++20 中已经被删除,所以在 c++20 标准中 gcc 和 clang 都可以捕获结构化绑定的对象了。

std::tuple 的隐式推导

在 c++17 以前,构造std::pair/std::tuple时必须指定数据类型或使用std::make_pair/std::make_tuple函数,c++17 为std::pair/std::tuple新增了推导规则,可以不再显示指定类型。

代码语言:javascript
复制
// pre c++17
std::pair<int, std::string> p1{3.14, "pi"s};
auto p1 = std::make_pair(3.14, "pi"s);

// c++17
std::pair p3{3.14, "pi"s};
if constexpr

if constexpr 语句是编译期的 if 判断语句,在 C++17 以前做编译期的条件判断往往通过复杂SFINAE机制或模版重载实现,甚至嫌麻烦的时候直接放到运行时用 if 判断,造成性能损耗,if constexpr 大大缓解了这个问题。比如我想实现一个函数将不同类型的输入转化为字符串,在 c++17 之前需要写三个函数去实现,而 c++17 只需要一个函数。

代码语言:javascript
复制
// pre c++17
template <typename T>
std::string convert(T input){
    return std::to_string(input);
}

// const char*和string进行特殊处理
std::string convert(const char* input){
    return input;
}
std::string convert(std::string input){
    return input;
}
代码语言:javascript
复制
// c++17
template <typename T>
std::string convert(T input) {
    if constexpr (std::is_same_v<T, const char*> ||
                  std::is_same_v<T, std::string>) {
        return input;
    } else {
        return std::to_string(input);
    }
}
if 初始化语句

c++17 支持在 if 的判断语句之前增加一个初始化语句,将仅用于 if 语句内部的变量声明在 if 内,有助于提升代码的可读性。且对于 lock/iterator 等涉及并发/RAII 的类型更容易保证程序的正确性。

代码语言:javascript
复制
// c++ 17
std::map<int, std::string> m;
std::mutex mx;
extern bool shared_flag; // guarded by mx

int demo()
{
    if (auto it = m.find(10); it != m.end()) { return it->second.size(); }
    if (char buf[10]; std::fgets(buf, 10, stdin)) { m[0] += buf; }
    if (std::lock_guard lock(mx); shared_flag) { unsafe_ping(); shared_flag = false; }
    if (int s; int count = ReadBytesWithSignal(&s)) { publish(count); raise(s); }
    if (const auto keywords = {"if", "for", "while"};
        std::ranges::any_of(keywords, [&tok](const char* kw) { return tok == kw; }))
    {
        std::cerr << "Token must not be a keyword\n";
    }
}

性能提升

std::shared_mutex

shared_mutex是 c++的原生读写锁实现,有共享和独占两种锁模式,适用于并发高的读场景下,通过 reader 之前共享锁来提升性能。在 c++17 之前,只能自己通过独占锁和条件变量自己实现读写锁或使用 c++14 加入的性能较差的std::shared_timed_mutex。以下是通过shared_mutex实现的线程安全计数器:

代码语言:javascript
复制
// c++17
class ThreadSafeCounter {
 public:
  ThreadSafeCounter() = default;

  // Multiple threads/readers can read the counter's value at the same time.
  unsigned int get() const {
    std::shared_lock lock(mutex_);
    return value_;
  }

  // Only one thread/writer can increment/write the counter's value.
  unsigned int increment() {
    std::unique_lock lock(mutex_);
    return ++value_;
  }

  // Only one thread/writer can reset/write the counter's value.
  void reset() {
    std::unique_lock lock(mutex_);
    value_ = 0;
  }

 private:
  mutable std::shared_mutex mutex_;
  unsigned int value_ = 0;
};
std::string_view

std::string_view顾名思义是字符串的“视图”,类成员变量包含两个部分:字符串指针和字符串长度,std::string_view 涵盖了 std::string 的所有只读接口。std::string_view 对字符串不具有所有权,且兼容 std::string 和 const char*两种类型。

c++17 之前,我们处理只读字符串往往使用const std::string&std::string有两点性能优势:

  1. 兼容两种字符串类型,减少类型转换和内存分配。如果传入的是明文字符串const char*, const std::string&需要进行一次内存分配,将字符串拷贝到堆上,而std::string_view则可以避免。
  2. 在处理子串时,std::string::substr也需要进行拷贝和分配内存,而std::string_view::substr则不需要,在处理大文件解析时,性能优势非常明显。
代码语言:javascript
复制
// from https://stackoverflow.com/a/40129046
// author: Pavel Davydov

// string_view的remove_prefix比const std::string&的快了15倍
string remove_prefix(const string &str) {
  return str.substr(3);
}
string_view remove_prefix(string_view str) {
  str.remove_prefix(3);
  return str;
}

static void BM_remove_prefix_string(benchmark::State& state) {
  std::string example{"asfaghdfgsghasfasg3423rfgasdg"};
  while (state.KeepRunning()) {
    auto res = remove_prefix(example);
    // auto res = remove_prefix(string_view(example)); for string_view
    if (res != "aghdfgsghasfasg3423rfgasdg") {
      throw std::runtime_error("bad op");
    }
  }
}
std::map/unordered_map try_emplace

在向std::map/unordered_map中插入元素时,我们往往使用emplaceemplace的操作是如果元素 key 不存在,则插入该元素,否则不插入。但是在元素已存在时,emplace仍会构造一次待插入的元素,在判断不需要插入后,立即将该元素析构,因此进行了一次多余构造和析构操作。c++17 加入了try_emplace,避免了这个问题。同时 try_emplace 在参数列表中将 key 和 value 分开,因此进行原地构造的语法比emplace更加简洁

代码语言:javascript
复制
std::map<std::string, std::string> m;
// emplace的原地构造需要使用std::piecewise_construct,因为是直接插入std::pair<key, value>
m.emplace(std::piecewise_construct,
           std::forward_as_tuple("c"),
           std::forward_as_tuple(10, 'c'));

// try_emplace可以直接原地构造,因为参数列表中key和value是分开的
m.try_emplace("c", 10, 'c')

同时,c++17 还给std::map/unordered_map加入了insert_or_assign函数,可以更方便地实现插入或修改语义。

类型系统

c++17 进一步完备了 c++的类型系统,终于加入了众望所归的类型擦除容器(Type Erasure)和代数数据类型(Algebraic Data Type)

std::any

std::any是一个可以存储任何可拷贝类型的容器,C 语言中通常使用void*实现类似的功能,与void*相比,std::any具有两点优势:

  1. std::any更安全:在类型 T 被转换成void*时,T 的类型信息就已经丢失了,在转换回具体类型时程序无法判断当前的void*的类型是否真的是 T,容易带来安全隐患。而std::any会存储类型信息,std::any_cast是一个安全的类型转换。
  2. std::any管理了对象的生命周期,在std::any析构时,会将存储的对象析构,而void*则需要手动管理内存。

std::any应当很少是程序员的第一选择,在已知类型的情况下,std::optional, std::variant和继承都是比它更高效、更合理的选择。只有当对类型完全未知的情况下,才应当使用std::any,比如动态类型文本的解析或者业务逻辑的中间层信息传递。

std::optional

std::optional<T>代表一个可能存在的 T 值,对应 Haskell 中的Maybe和 Rust/OCaml 中的option,实际上是一种Sum Type。常用于可能失败的函数的返回值中,比如工厂函数。在 C++17 之前,往往使用T*作为返回值,如果为nullptr则代表函数失败,否则T*指向了真正的返回值。但是这种写法模糊了所有权,函数的调用方无法确定是否应该接管T*的内存管理,而且T*可能为空的假设,如果忘记检查则会有 SegFault 的风险。

代码语言:javascript
复制
// pre c++17
ReturnType* func(const std::string& in) {
    ReturnType* ret = new ReturnType;
    if (in.size() == 0)
        return nullptr;
    // ...
    return ret;
}

// c++17 更安全和直观
std::optional<ReturnType> func(const string& in) {
    ReturnType ret;
    if (in.size() == 0)
        return nullopt;
    // ...
    return ret;
}
std::variant

std::variant<T, U, ...>代表一个多类型的容器,容器中的值是制定类型的一种,是通用的 Sum Type,对应 Rust 的enum。是一种类型安全的union,所以也叫做tagged union。与union相比有两点优势:

  1. 可以存储复杂类型,而 union 只能直接存储基础的 POD 类型,对于如std::vectorstd::string就等复杂类型则需要用户手动管理内存。
  2. 类型安全,variant 存储了内部的类型信息,所以可以进行安全的类型转换,c++17 之前往往通过union+enum来实现相同功能。

通过使用std::variant<T, Err>,用户可以实现类似 Rust 的std::result,即在函数执行成功时返回结果,在失败时返回错误信息,上文的例子则可以改成:

代码语言:javascript
复制
std::variant<ReturnType, Err> func(const string& in) {
    ReturnType ret;
    if (in.size() == 0)
        return Err{"input is empty"};
    // ...
    return {ret};
}

需要注意的是,c++17 只提供了一个库级别的 variant 实现,没有对应的模式匹配(Pattern Matching)机制,而最接近的std::visit又缺少编译器的优化支持,所以在 c++17 中std::variant并不好用,跟 Rust 和函数式语言中出神入化的 Sum Type 还相去甚远,但是已经有许多围绕std::variant的提案被提交给 c++委员会探讨,包括模式匹配,std::expected等等。

总结一下,c++17 新增的三种类型给 c++带来了更现代更安全的类型系统,它们对应的使用场景是:

  • std::any适用于之前使用void*作为通用类型的场景。
  • std::optional适用于之前使用nullptr代表失败状态的场景。
  • std::variant适用于之前使用union的场景。

总结

以上是笔者在生产环境中最常用的 c++17 特性,除了本文描述的十个特性外,c++17 还添加了如lambda 值捕获*this, 钳夹函数 std::clamp(), 强制检查返回值[[nodiscard]]等非常易用的特性,本文篇幅有限不做赘述,欢迎有兴趣的读者自行探索。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-05-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 腾讯技术工程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 语法糖
    • 结构化绑定
      • std::tuple 的隐式推导
        • if constexpr
          • if 初始化语句
          • 性能提升
            • std::shared_mutex
              • std::string_view
                • std::map/unordered_map try_emplace
                • 类型系统
                  • std::any
                    • std::optional
                      • std::variant
                      • 总结
                      相关产品与服务
                      容器服务
                      腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
                      领券
                      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档