前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从B+树到LSM树,及LSM树在HBase中的应用

从B+树到LSM树,及LSM树在HBase中的应用

作者头像
王知无-import_bigdata
发布2022-06-05 10:27:37
1K0
发布2022-06-05 10:27:37
举报

Hi,我是王知无,一个大数据领域的原创作者。

前言

在有代表性的关系型数据库如MySQL、SQL Server、Oracle中,数据存储与索引的基本结构就是我们耳熟能详的B树和B+树。而在一些主流的NoSQL数据库如HBase、Cassandra、LevelDB、RocksDB中,则是使用日志结构合并树(Log-structured Merge Tree,LSM Tree)来组织数据。本文先由B+树来引出对LSM树的介绍,然后说明HBase中是如何运用LSM树的。

回顾B+树

为什么在RDBMS中我们需要B+树(或者广义地说,索引)?一句话:减少寻道时间。在存储系统中广泛使用的HDD是磁性介质+机械旋转的,这就使得其顺序访问较快而随机访问较慢。使用B+树组织数据可以较好地利用HDD的这种特点,其本质是多路平衡查找树。下图是一棵高度为3的4路B+树示例。

与普通B树相比,B+树的非叶子节点只有索引,所有数据都位于叶子节点,并且叶子节点上的数据会形成有序链表。B+树的主要优点如下:

  • 结构比较扁平,高度低(一般不超过4层),随机寻道次数少;
  • 数据存储密度大,且都位于叶子节点,查询稳定,遍历方便;
  • 叶子节点形成有序链表,范围查询转化为顺序读,效率高。相对而言B树必须通过中序遍历才能支持范围查询。

当然,B+树也不是十全十美的,它的主要缺点有两个:

  • 如果写入的数据比较离散,那么寻找写入位置时,子节点有很大可能性不会在内存中,最终会产生大量的随机写,性能下降。下图来自TokuDB的PPT,说明了这一点。
  • 如果B+树已经运行了很长时间,写入了很多数据,随着叶子节点分裂,其对应的块会不再顺序存储,而变得分散。这时执行范围查询也会变成随机读,效率降低了。

可见,B+树在多读少写(相对而言)的情境下比较有优势,在多写少读的情境下就不是很有威力了。当然,我们可以用SSD来获得成倍提升的读写速率,但成本同样高昂,对海量存储集群而言不太可行。日志结构合并树(LSM Tree)就是作为B+树的替代方案产生的。

认识LSM树

LSM树实际上不是一棵树,而是2个或者多个树或类似树的结构(注意这点)的集合。下图示出最简单的有2个结构的LSM树。

(上图中,少了一个字母D)

在LSM树中,最低一级也是最小的C0树位于内存里,而更高级的C1、C2...树都位于磁盘里。数据会先写入内存中的C0树,当它的大小达到一定阈值之后,C0树中的全部或部分数据就会刷入磁盘中的C1树,如下图所示。

由于内存的读写速率都比外存要快非常多,因此数据写入C0树的效率很高。并且数据从内存刷入磁盘时是预排序的,也就是说,LSM树将原本的随机写操作转化成了顺序写操作,写性能大幅提升。不过,它的tradeoff就是牺牲了一部分读性能,因为读取时需要将内存中的数据和磁盘中的数据合并。总体上来讲这种tradeoff还是值得的,因为:

  • 可以先读取内存中C0树的缓存数据。内存的效率很高,并且根据局部性原理,最近写入的数据命中率也高。
  • 写入数据未刷到磁盘时不会占用磁盘的I/O,不会与读取竞争。读取操作就能取得更长的磁盘时间,变相地弥补了读性能差距。

在实际应用中,为了防止内存因断电等原因丢失数据,写入内存的数据同时会顺序在磁盘上写日志,类似于我们常见的预写日志(WAL),这就是LSM这个词中Log一词的来历。另外,如果有多级树的话,低级的树在达到大小阈值后也会在磁盘中进行合并,如下图所示。

下面以HBase为例来简要讲解LSM树是如何发挥其作用的。

HBase中的LSM树

在之前的学习中,我们已经了解HBase的读写流程与MemStore的作用。MemStore作为列族级别的写入和读取缓存,它就是HBase中LSM树的C0层。并且它确实也没有采用树形结构来存储,而是采用了跳表——一种替代自平衡BST的结构。MemStore Flush的过程,也就是LSM树中C0层刷写到C1层的过程,而LSM中的日志对应到HBase自然就是HLog了。

为了方便理解,再次祭出之前用过的HBase读写流程简图。

HFile就是LSM树中的高层实现。从逻辑上来讲,它是一棵满的3层B+树,从上到下的3层索引分别是Root index block、Intermediate index block和Leaf index block,对应到下面的Data block就是HFile的KeyValue结构了。HFile V2索引结构的图示如下:

我们已经知道,HFile过多会影响读写性能,因此高层LSM树的合并即对应HFile的合并(Compaction)操作。合并操作又分别Minor和Major Compaction,由于Major Compaction涉及整个Region,对磁盘压力很大,因此要尽量避免。

HBase为了提升LSM结构下的随机读性能,还引入了布隆过滤器(建表语句中可以指定),对应HFile中的Bloom index block,其结构图如下所示。

通过布隆过滤器,HBase就能以少量的空间代价,换来在读取数据时非常快速地确定是否存在某条数据,效率进一步提升。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2022-05-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据技术与架构 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 回顾B+树
  • 认识LSM树
  • HBase中的LSM树
相关产品与服务
TDSQL MySQL 版
TDSQL MySQL 版(TDSQL for MySQL)是腾讯打造的一款分布式数据库产品,具备强一致高可用、全球部署架构、分布式水平扩展、高性能、企业级安全等特性,同时提供智能 DBA、自动化运营、监控告警等配套设施,为客户提供完整的分布式数据库解决方案。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档