前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >实现 LRU 缓存算法

实现 LRU 缓存算法

作者头像
Se7en258
发布2022-06-24 14:04:22
7140
发布2022-06-24 14:04:22
举报
文章被收录于专栏:Se7en的架构笔记Se7en的架构笔记

1 LRU 缓存介绍

LRU 算法全称是最近最少使用算法(Least Recently Use),是一种简单的缓存策略。顾名思义,LRU 算法会选出最近最少使用的数据进行淘汰。

那么什么是缓存呢?缓存专业点可以叫一种提高数据读取性能的技术,可以有效解决存储器性能和容量的矛盾,是一种空间换时间的设计思想,比如我们常见的内存是硬盘的缓存,Cache 是内存的缓存,浏览器本地存储是网络访问的缓存......

LRU 有许多应用场景,例如:

  1. 操作系统底层的内存管理。
  2. 缓存服务,例如 Redis,当数据满的时候就要淘汰掉长期不使用的 key,在 Redis 中用了一个类似的 LRU 算法,而不是严格的 LRU 算法。
  3. MySQL 的 Buffer Pool,也就是缓冲池,它的目的是为了减少磁盘 IO。它是一块连续的内存,当 Buffer Pool 满的时候就要淘汰很久没有被访问过的页。

2 Leetcode 真题

146. LRU 缓存 [1],请你设计并实现一个满足 LRU (最近最少使用) 缓存约束的数据结构。

实现 LRUCache 类:

  • LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存。
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该逐出最久未使用的关键字。

函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例:

代码语言:javascript
复制
输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1);    // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2);    // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1);    // 返回 -1 (未找到)
lRUCache.get(3);    // 返回 3
lRUCache.get(4);    // 返回 4

3 题目分析

  • 1.首先,题目中提到函数 get 和 put 必须以 O(1) 的平均时间复杂度运行,很自然地我们可以想到应该使用哈希表。
  • 2.其次,当访问数据结构中的某个 key 时,需要将这个 key 更新为最近使用;另外如果 capacity 已满,需要删除访问时间最早的那条数据。这要求数据是有序的,并且可以支持在任意位置快速插入和删除元素,链表可以满足这个要求。
  • 3.结合 1,2 两点来看,我们可以采用哈希表 + 链表的结构实现 LRU 缓存。

如上图所示,就是哈希表 + 链表实现的 LRU 缓存数据结构,有以下几个问题解释一下:

  • 1.为什么这里要使用双向链表,而不是单向链表? 我们在找到了节点,需要删除节点的时候,如果使用单向链表的话,后驱节点的指针是直接能拿到的,但是这里要求时间复杂度是 O(1),要能够直接获取到前驱节点的指针,那么只能使用双向链表。
  • 2.哈希表里面已经保存了 key ,那么链表中为什么还要存储 key 和 value 呢,只存入 value 不就行了? 当我们删除节点的时候,除了需要删除链表中的节点,还需要删除哈希表中的节点。删除哈希表中的节点需要知道 key,所以在链表的节点中需要存储 key 和 value,当删除链表节点时拿到 key,再根据 key 到哈希表中删除节点。
  • 3.虚拟头节点和虚拟尾节点有什么用? 虚拟节点在链表中被广泛应用,又称为哨兵节点,通常不保存任何数据。使用虚拟节点我们可以统一处理链表中所有节点的插入删除操作,而不用考虑头尾两个节点的特殊情况。

4 代码实现

4.1 Golang

代码语言:javascript
复制
package main

import "fmt"

// LRU 数据结构
type LRUCache struct {
 capacity   int                  // 容量
 size       int                  // 已使用空间
 head, tail *DLinkedNode         // 头节点,尾节点
 cache      map[int]*DLinkedNode // 哈希表
}

// 双向链表数据结构
type DLinkedNode struct {
 key, value int
 prev, next *DLinkedNode // 前指针,后指针
}

// 创建一个新的节点
func initDLinkedNode(key, value int) *DLinkedNode {
 return &DLinkedNode{
  key:   key,
  value: value,
 }
}

// 初始化 LRU 结构
func Constructor(capacity int) LRUCache {
 l := LRUCache{
  cache:    map[int]*DLinkedNode{}, //  哈希表
  head:     initDLinkedNode(0, 0),  // 虚拟头节点
  tail:     initDLinkedNode(0, 0),  // 虚拟尾节点
  capacity: capacity,               // 容量
 }
 // 虚拟头节点和虚拟尾节点互连
 l.head.next = l.tail
 l.tail.prev = l.head
 return l
}

// 获取元素
func (this *LRUCache) Get(key int) int {
 // 如果没有在哈希表中找到 key
 if _, ok := this.cache[key]; !ok {
  return -1
 }
 // 如果 key 存在,先通过哈希表定位,再移到头部
 node := this.cache[key]
 this.moveToHead(node)
 return node.value
}

// 插入元素
func (this *LRUCache) Put(key int, value int) {
 // 先去哈希表中查询
 // 如果 key 不存在,创建一个新的节点
 if node, ok := this.cache[key]; !ok {
  newNode := initDLinkedNode(key, value)
  // 如果达到容量限制,链表删除尾部节点,哈希表删除元素
  this.size++
  if this.size > this.capacity {
   // 得到删除的节点
   removed := this.removeTail()
   // 根据得到的 key 删除哈希表中的元素
   delete(this.cache, removed.key)
   // 减少已使用容量
   this.size--
  }
  // 插入哈希表
  this.cache[key] = newNode
  // 插入链表
  this.addToHead(newNode)
 } else { // 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部
  node.value = value
  this.moveToHead(node)
 }
}

// 将节点添加到头部
func (this *LRUCache) addToHead(node *DLinkedNode) {
 // 新节点指向前后节点
 node.prev = this.head
 node.next = this.head.next
 
 // 前后节点指向新节点
 this.head.next.prev = node
 this.head.next = node
}

// 删除该节点
func (this *LRUCache) removeNode(node *DLinkedNode) {
 // 修改该节点前后节点的指针,不再指向该节点
 node.next.prev = node.prev
 node.prev.next = node.next
}

// 移动到头部,也就是当前位置删除,再添加到头部
func (this *LRUCache) moveToHead(node *DLinkedNode) {
 this.removeNode(node)
 this.addToHead(node)
}

// 移除尾部节点,淘汰最久未使用的
func (this *LRUCache) removeTail() *DLinkedNode {
 node := this.tail.prev // 虚拟尾节点的上一个才是真正的尾节点
 this.removeNode(node)
 return node
}

// 打印链表(解题不需要此方法,只是为了显示效果)
func (this *LRUCache) printDLinkedNode() {
 p := this.head
 for p != nil {
  fmt.Printf("key: %d, value: %d\n", p.key, p.value)
  p = p.next
 }
}
func main() {
 lru := Constructor(3)
 fmt.Println("=========================== 插入 3 个节点 ===========================")
 lru.Put(1, 100)
 lru.Put(2, 200)
 lru.Put(3, 300)
 fmt.Println("=========================== 打印当前链表 ===========================")
 lru.printDLinkedNode()

 fmt.Println("=========================== 插入第 4 个节点,LRU 缓存淘汰尾部节点 ===========================")
 lru.Put(4, 400)
 lru.printDLinkedNode()

 fmt.Println("=========================== 获取 key2 节点,更新 LRU 缓存,将会移动至链表头部 ===========================")
 lru.Get(2)
 lru.printDLinkedNode()
}

4.2 Java

代码语言:javascript
复制
import java.util.HashMap;  
import java.util.Map;  
  
public class LRUCache {  
    // 双向链表  
    class DLinkedNode {  
        int key;  
        int value;  
        DLinkedNode prev;  
        DLinkedNode next;  
  
        public DLinkedNode() {  
        }  
        public DLinkedNode(int key, int value) {  
            this.key = key;  
            this.value = value;  
        }  
    }  
    // 哈希表  
    private Map<Integer, DLinkedNode> cache = new HashMap<>();  
    // 已使用空间  
    private int size;  
    // 容量  
    private int capacity;  
    // 头节点,尾节点  
    private DLinkedNode head, tail;  
  
    public LRUCache(int capacity) {  
        this.size = 0;  
        this.capacity = capacity;  
        // 使用虚拟头部和虚拟尾部节点  
        head = new DLinkedNode();  
        tail = new DLinkedNode();  
        // 虚拟头节点和虚拟尾节点互连  
        head.next = tail;  
        tail.prev = head;  
    }  
  
    // 获取元素  
    public int get(int key) {  
        DLinkedNode node = cache.get(key);  
        // 如果没有在哈希表中找到 key  
        if (node == null) {  
            return -1;  
        }  
        // 如果 key 存在,先通过哈希表定位,再移到头部  
        moveToHead(node);  
        return node.value;  
    }  
  
    // 插入元素  
    public void put(int key, int value) {  
        DLinkedNode node = cache.get(key);  
        if (node == null) {  
            // 如果 key 不存在,创建一个新的节点  
            DLinkedNode newNode = new DLinkedNode(key, value);  
            // 如果达到容量限制,链表删除尾部节点,哈希表删除元素  
            size++;  
            if (size > capacity) {  
                // 得到删除的节点  
                DLinkedNode removed = removeTail();  
                // 根据得到的 key 删除哈希表中的元素  
                cache.remove(removed.key);  
                // 减少已使用容量  
                size--;  
            }  
            // 插入哈希表  
            cache.put(key, newNode);  
            // 添加至双链表的头部  
            addToHead(newNode);  
        } else {  
            // 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部  
            node.value = value;  
            moveToHead(node);  
        }  
    }  
    // 将节点添加到链表头部  
    private void addToHead(DLinkedNode node) {  
        // 新节点指向前后节点  
        node.prev = head;  
        node.next = head.next;  
        // 前后节点指向新节点  
        head.next.prev = node;  
        head.next = node;  
    }  
  
    // 删除节点  
    private void removeNode(DLinkedNode node) {  
        // 修改该节点前后节点的指针,不再指向该节点  
        node.prev.next = node.next;  
        node.next.prev = node.prev;  
    }  
  
    // 移动到头部,也就是当前位置删除,再添加到头部  
    private void moveToHead(DLinkedNode node) {  
        removeNode(node);  
        addToHead(node);  
    }  
  
    // 移除尾部节点,淘汰最久未使用的  
    private DLinkedNode removeTail() {  
        DLinkedNode res = tail.prev; // 虚拟尾节点,prev 才是此时真正的尾节点  
        removeNode(res);  
        return res;  
    }  
  
    // 打印链表(解题不需要此方法,只是为了显示效果)  
    private void printDLinkedNode() {  
        DLinkedNode p = this.head;  
        while (p != null) {  
            System.out.printf("key: %d, value: %d\n", p.key, p.value);  
            p = p.next;  
        }  
    }  
    public static void main(String[] args) {  
        LRUCache lru = new LRUCache(3);  
        System.out.println("=========================== 插入 3 个节点 ===========================");  
        lru.put(1, 100);  
        lru.put(2, 200);  
        lru.put(3, 300);  
        System.out.println("=========================== 打印当前链表 ===========================");  
        lru.printDLinkedNode();  
  
        System.out.println("=========================== 插入第 4 个节点,LRU 缓存淘汰尾部节点 key1 ===========================");  
        lru.put(4, 400);  
        lru.printDLinkedNode();  
  
        System.out.println("=========================== 获取 key2 的节点,更新 LRU 缓存,将会移动至链表头部 ===========================");  
        lru.get(2);  
        lru.printDLinkedNode();  
    }  
}

4.3 运行结果

代码运行的返回结果如下,其中头尾两个 key=0, value=0 的节点是虚拟节点,请忽略。

代码语言:javascript
复制
=========================== 插入 3 个节点 ===========================
=========================== 打印当前链表 ===========================
key: 0, value: 0
key: 3, value: 300
key: 2, value: 200
key: 1, value: 100
key: 0, value: 0
=========================== 插入第 4 个节点,LRU 缓存淘汰尾部节点 ===========================
key: 0, value: 0
key: 4, value: 400
key: 3, value: 300
key: 2, value: 200
key: 0, value: 0
=========================== 获取 key2 节点,更新 LRU 缓存,将会移动至链表头部 ===========================
key: 0, value: 0
key: 2, value: 200
key: 4, value: 400
key: 3, value: 300
key: 0, value: 0

5 测试案例示意图

第 1 步:初始化数据结构。

第 2 步:插入节点 key1。

第 3 步:插入节点 key2。 此时 key2 插入到链表头部。

第 4 步:插入节点 key3。 此时 key3 插入到链表头部。

第 5 步:插入节点 key4。当前 capacity 容量达到上限(3),分为 2 步:

使用 removeTail() 方法删除链表尾部的节点 key1,从 removeTail() 方法的返回值得到 node,再根据 node.key 得到 key1,然后去哈希表删除节点 key1。

然后插入节点 key4,此时 key4 在链表头部。

第 6 步:读取 key2 的值,将 key2 移动到链表头部。

6 参考资料

  • [1] 146. LRU 缓存: https://leetcode.cn/problems/lru-cache/
  • [2] 以Leetcode第146题为例学习LRU缓存算法: https://mp.weixin.qq.com/s/nI-rp3zTtei3TFIoBDcr5Q
  • [3] 从leetcode真题讲解手写LRU算法: http://www.xiaojieboshi.com/%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84/%E4%BB%8Eleetcode%E7%9C%9F%E9%A2%98%E8%AE%B2%E8%A7%A3%E6%89%8B%E5%86%99LRU%E7%AE%97%E6%B3%95.html#%E5%89%8D%E8%A8%80
  • [4] LRU缓存机制: https://leetcode.cn/problems/lru-cache/solution/lruhuan-cun-ji-zhi-by-leetcode-solution/
  • [5] Java集合系列之LinkedHashMap: https://juejin.cn/post/6844903544152129550
  • [6] LinkedHashMap基本原理和用法&使用实现简单缓存:https://www.cnblogs.com/myseries/p/10774487.html
  • [7] LRU算法及其优化策略——算法篇: https://juejin.cn/post/6844904049263771662#heading-3
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2022-05-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Se7en的架构笔记 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 LRU 缓存介绍
  • 2 Leetcode 真题
  • 3 题目分析
  • 4 代码实现
    • 4.1 Golang
      • 4.2 Java
        • 4.3 运行结果
        • 5 测试案例示意图
        • 6 参考资料
        相关产品与服务
        云数据库 Redis
        腾讯云数据库 Redis(TencentDB for Redis)是腾讯云打造的兼容 Redis 协议的缓存和存储服务。丰富的数据结构能帮助您完成不同类型的业务场景开发。支持主从热备,提供自动容灾切换、数据备份、故障迁移、实例监控、在线扩容、数据回档等全套的数据库服务。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档