前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >谷歌开始卷自己,AI架构Pathways加持,推出200亿生成模型

谷歌开始卷自己,AI架构Pathways加持,推出200亿生成模型

作者头像
机器之心
发布2022-06-27 12:42:36
4640
发布2022-06-27 12:42:36
举报
文章被收录于专栏:机器之心

机器之心报道

机器之心编辑部

继 Imagen 后,谷歌又推出了文本 - 图像生成模型 Parti。

你见过一只小狗破壳而出吗?或者用飞艇俯瞰蒸汽朋克中的城市?又或者两个机器人在电影院像人类一样看电影…… 这些听起来可能有些天马行空,但一种名为「文本到图像生成」的新型机器学习技术使这些成为可能。

谷歌研究院的科学家和工程师一直致力于探索使用各种 AI 技术生成文本到图像的方法。

今年 5 月底,谷歌推出 AI 创作神器 Imagen,它结合了 Transformer 语言模型和高保真扩散模型的强大功能,在文本到图像的合成中提供前所未有的逼真度和语言理解能力。与仅使用图像 - 文本数据进行模型训练的先前工作相比,Imagen 的关键突破在于:谷歌的研究者发现在纯文本语料库上预训练的大型 LM 的文本嵌入对文本到图像的合成显著有效。Imagen 的文本到图像生成可谓天马行空,能生成多种奇幻却逼真的有趣图像。

Imagen 生成效果是这样的,比如正在户外享受骑行的柴犬(下图左)以及狗狗照镜子发现自己是只猫(下图右):

时隔没多久,谷歌又推出了 Parti(Pathways Autoregressive Text-to-Image),该模型最高可扩展至 200 亿参数,并且随着可使用参数数量的增长,其输出的图像也能够更加逼真。

值得一提的是,这是谷歌大牛 Jeff Dean 提出的多任务 AI 大模型蓝图 Pathways 的一部分。

我们先来看下 Parti 效果,袋熊在瀑布旁,背着书包,拄着拐杖眺望着远方:

埃及阿努比斯肖像,在洛杉矶背景下,戴着飞行员护目镜,穿着白色 t 恤和黑色皮夹克:

一只熊猫戴着一顶巫师帽骑在马上:

下面我们介绍一下 Parti 的实现原理。

Parti 模型

与 DALL-E、CogView 和 Make-A-Scene 类似,Parti 是一个两阶段模型,由图像 tokenizer 和自回归模型组成,如下图 3 所示。第一阶段训练一个 tokenizer,该 tokenizer 可以将图像转换为一系列离散的视觉 token,用于训练并在推理时重建图像。第二阶段训练从文本 token 生成图像 token 的自回归序列到序列模型。

图像 Tokenizer

首先,该研究训练了一个 ViT-VQGAN-Small 模型(8 个块,8 个头,模型维度 512,隐藏维度 2048,总参数约为 30M),并且学习了 8192 张图像 token 类别用于代码本。

为了进一步提高第二阶段编码器 - 解码器训练后重建图像的视觉灵敏度,该研究冻结了 tokenizer 的编码器和代码本,并微调更大尺寸的 tokenizer 解码器(32 个块,16 个头,模型维度 1280,隐藏维度 5120, 总参数约 600M)。图像 tokenizer 的输入和输出使用 256×256 分辨率。

最后,虽然分辨率为 256×256 的图像捕获了大部分内容、结构和纹理,但更高分辨率的图像具有更大的视觉冲击力。为此,该研究在图像 tokenizer 上采用了一个简单的超分辨率模块,如下图 4 所示。

文本到图像生成的编码器 - 解码器架构

如上图 3 所示,该研究第二阶段训练了一种标准的编码器 - 解码器 Transformer 模型,将文本到图像视为序列到序列建模问题。该模型将文本作为输入,并使用从第一阶段图像 tokenizer 生成的光栅化图像潜在代码的下一个 token 预测进行训练。对于文本编码,该研究构建了一个 sentence-piece 模型,词汇量为 16000。在推理时,模型对图像 token 进行自回归采样,随后使用 ViT-VQGAN 解码器将其解码为像素。

该研究使用的文本 token 最大为 128,图像 token 的长度固定为 1024。所有模型都使用 conv-shaped 掩码稀疏注意力。该研究训练了四种变体,参数量从 3.5 亿到 200 亿不等,如下表 1 所示。

以下为对 Parti 模型四种大小比较结果,可以观察到:模型性能和输出图像质量在持续地提高;20B 模型尤其擅长于那些抽象的、需要世界知识的、特定视角的、或符号渲染的 prompt。

在悉尼歌剧院前的草地上,一只袋鼠穿着橙色卫衣,戴着蓝色墨镜,胸前挂着「欢迎朋友」的牌子。

松鼠把苹果送给了小鸟。

文本编码器预训练

该研究在两个数据集上预训练文本编码器:具有 BERT [36] 预训练目标的 Colossal Clean Crawled Corpus (C4) [35],以及具有对比学习目标的图像文本数据。预训练后,该研究继续训练编码器和解码器,在 8192 个离散图像 token 的词汇表上使用 softmax 交叉熵损失生成文本到图像。

预训练后的文本编码器在 GLUE 上的性能与 BERT 相当;然而,在文本到图像生成的完整编码器 - 解码器训练过程之后,文本编码器会降级。

扩展

该研究在 Lingvo 上来实现模型,并在 CloudTPUv4 硬件上使用 GSPMD 进行扩展,以用于训练和推理。GSPMD 是一个基于 XLA 编译器的模型分布系统,它允许将 TPU 集群视为单个虚拟设备,并在几个张量上使用 sharding annotations 来指示编译器自动分发数据并在数千个设备上进行计算。

该研究用数据并行性训练 350M 和 750M 模型。对于 3B 模型,该研究使用 4 路内层模型并行(参见下图 5)和 128 路数据并行。

下图 6 为分布式训练策略整体架构图:

实验

下表 5 给出了自动图像质量评估的主要结果。与基于扩散的 Imagen 模型相比,Parti 获得了相媲美的零样本 FID 分数。

下表 6 为 Parti 字幕评估结果(captioner evaluation [55]),Parti 优于其他模型:

下图 8 显示,尽管 Parti 没有接受过 MS-COCO 字幕或图像方面的训练,但表现更好。

下图 9 总结了 MS-COCO 零样本 FID 分数:

更多内容,请参考原论文。

参考链接:https://blog.google/technology/research/how-ai-creates-photorealistic-images-from-text/

© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:content@jiqizhixin.com

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-06-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档