前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Redis CacheClient

Redis CacheClient

作者头像
收心
发布2022-06-27 13:32:03
4520
发布2022-06-27 13:32:03
举报
文章被收录于专栏:Java实战博客

此工具解决了Redis的缓存击穿、缓存穿透、缓存雪崩的问题,更多的可参考泛型与Function的使用!非常好的一种方式!

注意,下方代码依赖了Hutool工具包,以及引用了几个字符常量,自行换成任意字符即可!

介绍:

代码语言:javascript
复制
缓存击穿 queryWithPassThrough
缓存穿透 queryWithMutex
缓存雪崩 queryWithLogicalExpire
代码语言:javascript
复制
import cn.hutool.core.util.BooleanUtil;
import cn.hutool.core.util.StrUtil;
import cn.hutool.json.JSONObject;
import cn.hutool.json.JSONUtil;
import lombok.extern.slf4j.Slf4j;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.HashMap;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import java.util.function.Function;

@Slf4j
@Component // 注册为IOC容器的Bean,使用直接Autowired
public class CacheClient {
    private final StringRedisTemplate stringRedisTemplate;

    // 定义一个线程池,方便开启线程去执行操作
    private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);

    public CacheClient(StringRedisTemplate stringRedisTemplate) {
        this.stringRedisTemplate = stringRedisTemplate;
    }

    // 添加一个String类型的键值对
    public void set(String key, Object value, Long time, TimeUnit unit) {
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit);
    }

    // 设置逻辑过期Key,以实现避免缓存击穿
    public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit) {
        // 设置逻辑过期
        HashMap<String, Object> hashMap = new HashMap();
        hashMap.put("data", value);
        hashMap.put("expireTime", LocalDateTime.now().plusSeconds(unit.toSeconds(time)));
        // 写入Redis
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(hashMap));
        /**
         RedisData redisData = new RedisData();
         //redisData.setData(value);
         //redisData.setExpireTime();
         // 写入Redis
         stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));
         **/
    }

    // 缓存穿透解决方案:正常查询,正常走。如果DB没有数据,则插入带有TTL的空值
    public <R, ID> R queryWithPassThrough(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
        String key = keyPrefix + id;
        // 1.从redis查询商铺缓存
        String json = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(json)) {
            // 3.存在,直接返回
            return JSONUtil.toBean(json, type);
        }
        // 判断命中的是否是空值
        if (json != null) {
            // 返回一个错误信息
            return null;
        }
        // 4.不存在,根据id查询数据库
        R r = dbFallback.apply(id);
        // 5.不存在,返回错误
        if (r == null) {
            // 将空值写入redis
            stringRedisTemplate.opsForValue().set(key, "", 5, TimeUnit.MINUTES);
            // 返回错误信息
            return null;
        }
        // 6.存在,写入redis
        this.set(key, r, time, unit);
        return r;
    }

    // 缓存雪崩的解决方案:询逻辑过期,如果过期了,那就重新插入进去
    public <R, ID> R queryWithLogicalExpire(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
        String key = keyPrefix + id;
        // 1.从redis查询商铺缓存
        String json = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isBlank(json)) {
        // 3.存在,直接返回
            return null;
        }
        // 4.命中,需要先把json反序列化为对象
        HashMap<String,Object> hashMap = JSONUtil.toBean(json, HashMap.class);
        R r = JSONUtil.toBean((JSONObject) hashMap.get("data"), type);
        /**
        RedisData redisData = JSONUtil.toBean(json, RedisData.class);
        R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);
        LocalDateTime expireTime = redisData.getExpireTime();
         **/
        LocalDateTime localDateTime = LocalDateTime.parse((CharSequence) hashMap.get("expireTime"), DateTimeFormatter.ofPattern("yyyy-MM-dd E HH:mm:ss"));
        // 5.判断是否过期,使用的是纯JDK的工具
        if (localDateTime.isAfter(LocalDateTime.now())) {
            // 5.1.未过期,直接返回店铺信息
            return r;
        }
        // 5.2.已过期,需要缓存重建
        // 6.缓存重建
        // 6.1.获取互斥锁
        String lockKey = "LOCK_SHOP_KEY" + id;
        boolean isLock = tryLock(lockKey);
        // 6.2.判断是否获取锁成功
        if (isLock) {
            // 6.3.成功,开启独立线程,实现缓存重建
            CACHE_REBUILD_EXECUTOR.submit(() -> {
                try {
                    // 查询数据库
                    R newR = dbFallback.apply(id);
                    // 重建缓存
                    this.setWithLogicalExpire(key, newR, time, unit);
                } catch (Exception e) {
                    throw new RuntimeException(e);
                } finally {
                    // 释放锁
                    unlock(lockKey);
                }
            });
        }
        // 6.4.返回过期的商铺信息
        return r;
    }

    // 缓存雪崩解决方案:互斥锁:自己会调用自己,如果Key不存在,则只有一个线程执行插入DB操作
    public <R, ID> R queryWithMutex(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
        String key = keyPrefix + id;
        // 1.从redis查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 3.存在,直接返回
            return JSONUtil.toBean(shopJson, type);
        }
        // 判断命中的是否是空值
        if (shopJson != null) {
            // 返回一个错误信息
            return null;
        }
        // 4.实现缓存重建
        // 4.1.获取互斥锁
        String lockKey = "Operate:AddLock" + id;
        R r = null;
        try {
            boolean isLock = tryLock(lockKey);
                // 4.2.判断是否获取成功
            if (!isLock) {
                // 4.3.获取锁失败,休眠并重试
                Thread.sleep(50);
                return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit);
            }
            // 4.4.获取锁成功,根据id查询数据库
            r = dbFallback.apply(id);
            // 5.不存在,返回错误
            if (r == null) {
                // 将空值写入redis
                stringRedisTemplate.opsForValue().set(key, "", 5, TimeUnit.MINUTES);
            // 返回错误信息
                return null;
            }
            // 6.存在,写入redis
            this.set(key, r, time, unit);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            // 7.释放锁
            unlock(lockKey);
        }
        // 8.返回
        return r;
    }

    // 尝试加锁
    private boolean tryLock(String key) {
        Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
        return BooleanUtil.isTrue(flag);
    }

    // 解锁
    private void unlock(String key) {
        stringRedisTemplate.delete(key);
    }
}

特殊说明: 以上文章,均是我实际操作,写出来的笔记资料,不会盗用别人文章!烦请各位,请勿直接盗用!转载记得标注来源!

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
云数据库 Redis®
腾讯云数据库 Redis®(TencentDB for Redis®)是腾讯云打造的兼容 Redis 协议的缓存和存储服务。丰富的数据结构能帮助您完成不同类型的业务场景开发。支持主从热备,提供自动容灾切换、数据备份、故障迁移、实例监控、在线扩容、数据回档等全套的数据库服务。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档