前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >使用 PyTorch 实现 MLP 并在 MNIST 数据集上验证

使用 PyTorch 实现 MLP 并在 MNIST 数据集上验证

作者头像
全栈程序员站长
发布2022-06-28 10:51:25
1.9K0
发布2022-06-28 10:51:25
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

简介

这是深度学习课程的第一个实验,主要目的就是熟悉 Pytorch 框架。MLP 是多层感知器,我这次实现的是四层感知器,代码和思路参考了网上的很多文章。个人认为,感知器的代码大同小异,尤其是用 Pytorch 实现,除了层数和参数外,代码都很相似。

Pytorch 写神经网络的主要步骤主要有以下几步:

  1. 构建网络结构
  2. 加载数据
  3. 训练神经网络(包括优化器的选择和 Loss 的计算)
  4. 测试神经网络

下面将从这四个方面介绍 Pytorch 搭建 MLP 的过程。

项目代码地址:lab1

过程

构建网络结构

神经网络最重要的就是搭建网络,第一步就是定义网络结构。我这里是创建了一个四层的感知器,参数是根据 MNIST 数据集设定的,网络结构如下:

代码语言:javascript
复制
# 建立一个四层感知机网络
class MLP(torch.nn.Module):   # 继承 torch 的 Module
    def __init__(self):
        super(MLP,self).__init__()    # 
        # 初始化三层神经网络 两个全连接的隐藏层,一个输出层
        self.fc1 = torch.nn.Linear(784,512)  # 第一个隐含层  
        self.fc2 = torch.nn.Linear(512,128)  # 第二个隐含层
        self.fc3 = torch.nn.Linear(128,10)   # 输出层
        
    def forward(self,din):
        # 前向传播, 输入值:din, 返回值 dout
        din = din.view(-1,28*28)       # 将一个多行的Tensor,拼接成一行
        dout = F.relu(self.fc1(din))   # 使用 relu 激活函数
        dout = F.relu(self.fc2(dout))
        dout = F.softmax(self.fc3(dout), dim=1)  # 输出层使用 softmax 激活函数
        # 10个数字实际上是10个类别,输出是概率分布,最后选取概率最大的作为预测值输出
        return dout

网络结构其实很简单,设置了三层 Linear。隐含层激活函数使用 Relu; 输出层使用 Softmax。网上还有其他的结构使用了 droupout,我觉得入门的话有点高级,而且放在这里并没有什么用,搞得很麻烦还不能提高准确率。

加载数据集

第二步就是定义全局变量,并加载 MNIST 数据集:

代码语言:javascript
复制
# 定义全局变量
n_epochs = 10     # epoch 的数目
batch_size = 20  # 决定每次读取多少图片

# 定义训练集个测试集,如果找不到数据,就下载
train_data = datasets.MNIST(root = './data', train = True, download = True, transform = transforms.ToTensor())
test_data = datasets.MNIST(root = './data', train = True, download = True, transform = transforms.ToTensor())
# 创建加载器
train_loader = torch.utils.data.DataLoader(train_data, batch_size = batch_size, num_workers = 0)
test_loader = torch.utils.data.DataLoader(test_data, batch_size = batch_size, num_workers = 0)

这里参数很多,所以就有很多需要注意的地方了:

  • root 参数的文件夹即使不存在也没关系,会自动创建
  • transform 参数,如果不知道要对数据集进行什么变化,这里可自动忽略
  • batch_size 参数的大小决定了一次训练多少数据,相当于定义了每个 epoch 中反向传播的次数
  • num_workers 参数默认是 0,即不并行处理数据;我这里设置大于 0 的时候,总是报错,建议设成默认值

如果不理解 epoch 和 batch_size,可以上网查一下资料。(我刚开始学深度学习的时候也是不懂的)

训练神经网络

第三步就是训练网络了,代码如下:

代码语言:javascript
复制
# 训练神经网络
def train():
    # 定义损失函数和优化器
    lossfunc = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(params = model.parameters(), lr = 0.01)
    # 开始训练
    for epoch in range(n_epochs):
        train_loss = 0.0
        for data,target in train_loader:
            optimizer.zero_grad()   # 清空上一步的残余更新参数值
            output = model(data)    # 得到预测值
            loss = lossfunc(output,target)  # 计算两者的误差
            loss.backward()         # 误差反向传播, 计算参数更新值
            optimizer.step()        # 将参数更新值施加到 net 的 parameters 上
            train_loss += loss.item()*data.size(0)
        train_loss = train_loss / len(train_loader.dataset)
        print('Epoch:  {}  \tTraining Loss: {:.6f}'.format(epoch + 1, train_loss))

训练之前要定义损失函数和优化器,这里其实有很多学问,但本文就不讲了,理论太多了。

训练过程就是两层 for 循环:外层是遍历训练集的次数;内层是每次的批次(batch)。最后,输出每个 epoch 的 loss。(每次训练的目的是使 loss 函数减小,以达到训练集上更高的准确率)

测试神经网络

最后,就是在测试集上进行测试,代码如下:

代码语言:javascript
复制
# 在数据集上测试神经网络
def test():
    correct = 0
    total = 0
    with torch.no_grad():  # 训练集中不需要反向传播
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy of the network on the test images: %d %%' % (
        100 * correct / total))
    return 100.0 * correct / total

这个测试的代码是同学给我的,我觉得这个测试的代码特别好,很简洁,一直用的这个。

代码首先设置 torch.no_grad(),定义后面的代码不需要计算梯度,能够节省一些内存空间。然后,对测试集中的每个 batch 进行测试,统计总数和准确数,最后计算准确率并输出。

通常是选择边训练边测试的,这里先就按步骤一步一步来做。

有的测试代码前面要加上 model.eval(),表示这是训练状态。但这里不需要,如果没有 Batch Normalization 和 Dropout 方法,加和不加的效果是一样的

完整代码

代码语言:javascript
复制
'''
系统环境: Windows10
Python版本: 3.7
PyTorch版本: 1.1.0
cuda: no
'''
import torch
import torch.nn.functional as F   # 激励函数的库
from torchvision import datasets
import torchvision.transforms as transforms
import numpy as np

# 定义全局变量
n_epochs = 10     # epoch 的数目
batch_size = 20  # 决定每次读取多少图片

# 定义训练集个测试集,如果找不到数据,就下载
train_data = datasets.MNIST(root = './data', train = True, download = True, transform = transforms.ToTensor())
test_data = datasets.MNIST(root = './data', train = True, download = True, transform = transforms.ToTensor())
# 创建加载器
train_loader = torch.utils.data.DataLoader(train_data, batch_size = batch_size, num_workers = 0)
test_loader = torch.utils.data.DataLoader(test_data, batch_size = batch_size, num_workers = 0)


# 建立一个四层感知机网络
class MLP(torch.nn.Module):   # 继承 torch 的 Module
    def __init__(self):
        super(MLP,self).__init__()    # 
        # 初始化三层神经网络 两个全连接的隐藏层,一个输出层
        self.fc1 = torch.nn.Linear(784,512)  # 第一个隐含层  
        self.fc2 = torch.nn.Linear(512,128)  # 第二个隐含层
        self.fc3 = torch.nn.Linear(128,10)   # 输出层
        
    def forward(self,din):
        # 前向传播, 输入值:din, 返回值 dout
        din = din.view(-1,28*28)       # 将一个多行的Tensor,拼接成一行
        dout = F.relu(self.fc1(din))   # 使用 relu 激活函数
        dout = F.relu(self.fc2(dout))
        dout = F.softmax(self.fc3(dout), dim=1)  # 输出层使用 softmax 激活函数
        # 10个数字实际上是10个类别,输出是概率分布,最后选取概率最大的作为预测值输出
        return dout

# 训练神经网络
def train():
    #定义损失函数和优化器
    lossfunc = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(params = model.parameters(), lr = 0.01)
    # 开始训练
    for epoch in range(n_epochs):
        train_loss = 0.0
        for data,target in train_loader:
            optimizer.zero_grad()   # 清空上一步的残余更新参数值
            output = model(data)    # 得到预测值
            loss = lossfunc(output,target)  # 计算两者的误差
            loss.backward()         # 误差反向传播, 计算参数更新值
            optimizer.step()        # 将参数更新值施加到 net 的 parameters 上
            train_loss += loss.item()*data.size(0)
        train_loss = train_loss / len(train_loader.dataset)
        print('Epoch:  {}  \tTraining Loss: {:.6f}'.format(epoch + 1, train_loss))
        # 每遍历一遍数据集,测试一下准确率
        test()

# 在数据集上测试神经网络
def test():
    correct = 0
    total = 0
    with torch.no_grad():  # 训练集中不需要反向传播
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy of the network on the test images: %d %%' % (
        100 * correct / total))
    return 100.0 * correct / total

# 声明感知器网络
model = MLP()

if __name__ == '__main__':
    train()

10 个 epoch 的训练效果,最后能达到大约 85% 的准确率。可以适当增加 epoch,但代码里没有用 gpu 运行,可能会比较慢。

参考

写代码的时候,很大程度上参考了下面一些文章,感谢各位作者

  1. 基于Pytorch的MLP实现
  2. 莫烦 Python ——区分类型 (分类)
  3. 使用Pytorch构建MLP模型实现MNIST手写数字识别

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/151071.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 简介
  • 过程
    • 构建网络结构
      • 加载数据集
        • 训练神经网络
          • 测试神经网络
          • 完整代码
          • 参考
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档