前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >MATLAB优化函数fmincon解析[通俗易懂]

MATLAB优化函数fmincon解析[通俗易懂]

作者头像
全栈程序员站长
发布2022-07-02 10:31:08
1.7K0
发布2022-07-02 10:31:08
举报

大家好,又见面了,我是你们的朋友全栈君。

MATLAB,优化函数fmincon解析

[x,fval,exitflag,output,lambda,grad,hessian]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);

输入参数:fun要求解的函数值;x0函数fun参数值的初始化;

参数值的线性不等式约束A,b

参数值的等式线性约束Aeq,beq,

参数值的上界和下界lb,ub

非线性约束nonlcon

MATLAB优化函数fmincon解析[通俗易懂]
MATLAB优化函数fmincon解析[通俗易懂]
MATLAB优化函数fmincon解析[通俗易懂]
MATLAB优化函数fmincon解析[通俗易懂]

输出参数:X输出最优参数值

Fval输出fun在X参数的值

Exitflag输出fmincon额外条件值

代码语言:javascript
复制
function [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] = fmincon(FUN,X,A,B,Aeq,Beq,LB,UB,NONLCON,options,varargin)
/*fmincon可以在多元函数中找到最小值
   FMINCON attempts to solve problems of the form:
  min F(X)  subject to:  A*X  <= B, Aeq*X  = Beq (linear constraints)线性约束
    X                     C(X) <= 0, Ceq(X) = 0   (nonlinear constraints)非线性约束
                              LB <= X <= UB        (bounds)
   */
 /*FMINCON implements four different algorithms: interior point, SQP,
%   active set, and trust region reflective. Choose one via the option
%   Algorithm: for instance, to choose SQP, set OPTIONS =
%   optimoptions('fmincon','Algorithm','sqp'), and then pass OPTIONS to
%   FMINCON.
	fmincon函数应用四种不同的算法:内点法(interior point);序列二次规划算法(SQP);有效集法(active set);信赖域有效算法(trust region reflective)。
	如果采用SQP算法可以设置 OPTIONS = optimoptions('fmincon','Algorithm','sqp'),再把OPTIONS赋给fmincon
     */  
	/* 
%   X = FMINCON(FUN,X0,A,B) starts at X0 and finds a minimum X to the 
%   function FUN, subject to the linear inequalities A*X <= B. FUN accepts 
%   input X and returns a scalar function value F evaluated at X. X0 may be
%   a scalar, vector, or matrix. 
%
%   X = FMINCON(FUN,X0,A,B,Aeq,Beq) minimizes FUN subject to the linear 
%   equalities Aeq*X = Beq as well as A*X <= B. (Set A=[] and B=[] if no 
%   inequalities exist.)
%
%   X = FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB) defines a set of lower and upper
%   bounds on the design variables, X, so that a solution is found in 
%   the range LB <= X <= UB. Use empty matrices for LB and UB
%   if no bounds exist. Set LB(i) = -Inf if X(i) is unbounded below; 
%   set UB(i) = Inf if X(i) is unbounded above.
%
%   X = FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON) subjects the minimization
%   to the constraints defined in NONLCON. The function NONLCON accepts X 
%   and returns the vectors C and Ceq, representing the nonlinear 
%   inequalities and equalities respectively. FMINCON minimizes FUN such 
%   that C(X) <= 0 and Ceq(X) = 0. (Set LB = [] and/or UB = [] if no bounds
%   exist.)
%
%   X = FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS) minimizes with
%   the default optimization parameters replaced by values in OPTIONS, an
%   argument created with the OPTIMOPTIONS function. See OPTIMOPTIONS for
%   details. For a list of options accepted by FMINCON refer to the
%   documentation.
%  
%   X = FMINCON(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a
%   structure with the function FUN in PROBLEM.objective, the start point
%   in PROBLEM.x0, the linear inequality constraints in PROBLEM.Aineq
%   and PROBLEM.bineq, the linear equality constraints in PROBLEM.Aeq and
%   PROBLEM.beq, the lower bounds in PROBLEM.lb, the upper bounds in 
%   PROBLEM.ub, the nonlinear constraint function in PROBLEM.nonlcon, the
%   options structure in PROBLEM.options, and solver name 'fmincon' in
%   PROBLEM.solver. Use this syntax to solve at the command line a problem 
%   exported from OPTIMTOOL. The structure PROBLEM must have all the fields.
%
%   [X,FVAL] = FMINCON(FUN,X0,...) returns the value of the objective 
%   function FUN at the solution X.
%
%   [X,FVAL,EXITFLAG] = FMINCON(FUN,X0,...) returns an EXITFLAG that 
%   describes the exit condition of FMINCON. Possible values of EXITFLAG 
%   and the corresponding exit conditions are listed below. See the
%   documentation for a complete description.
%   */

/*
%   All algorithms:
%     1  First order optimality conditions satisfied.
%     0  Too many function evaluations or iterations.
%    -1  Stopped by output/plot function.
%    -2  No feasible point found.
%   Trust-region-reflective, interior-point, and sqp:
%     2  Change in X too small.
%   Trust-region-reflective:
%     3  Change in objective function too small.
%   Active-set only:
%     4  Computed search direction too small.
%     5  Predicted change in objective function too small.
%   Interior-point and sqp:
%    -3  Problem seems unbounded.
		所有算法中EXITFLAG返回值涵义
			1  满足一阶最优性条件
			0	函数计算或迭代太多。无法求解
			-1 被输出和绘图功能阻止
			-2	找不到可行点
			Trust-region-reflective, interior-point, and sqp:三种算法才有的返回值
			2  X变化太小
			Active-set 算法才有的返回值
			4	计算搜索的方向太小
			5	目标函数的预测变化太小。
			Interior-point and sqp才有的
			-3  问题没有边界
		*/
/*
%   [X,FVAL,EXITFLAG,OUTPUT] = FMINCON(FUN,X0,...) returns a structure 
%   OUTPUT with information such as total number of iterations, and final 
%   objective function value. See the documentation for a complete list.
  返回包含迭代总数和最终目标函数值等信息的结构输出
*/
/*
%   [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = FMINCON(FUN,X0,...) returns the 
%   Lagrange multipliers at the solution X: LAMBDA.lower for LB, 
%   LAMBDA.upper for UB, LAMBDA.ineqlin is for the linear inequalities, 
%   LAMBDA.eqlin is for the linear equalities, LAMBDA.ineqnonlin is for the
%   nonlinear inequalities, and LAMBDA.eqnonlin is for the nonlinear 
%   equalities.
     返回解x处的拉格朗日乘数:lambda.lower表示lb,lambda.upper表示ub,
	 lambda.ineqlin表示线性不等式,lambda.eqlin表示线性等式,
	 lambda.ineqnonlin表示非线性不等式,lambda.eqnonlin表示非线性不等式。
*/

/*
%   [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD] = FMINCON(FUN,X0,...) returns the 
%   value of the gradient of FUN at the solution X.
返回解决方案x的fun渐变值。
%*/
/*  [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] = FMINCON(FUN,X0,...) 
%   returns the value of the exact or approximate Hessian of the Lagrangian
%   at X. 
返回X的朗格朗日精确解或者近似Hessian矩阵
*/
/* Examples
%     FUN can be specified using @:
%        X = fmincon(@humps,...)
%     In this case, F = humps(X) returns the scalar function value F of 
%     the HUMPS function evaluated at X.
%
%     FUN can also be an anonymous function:
%        X = fmincon(@(x) 3*sin(x(1))+exp(x(2)),[1;1],[],[],[],[],[0 0])
%     returns X = [0;0].
%
%   If FUN or NONLCON are parameterized, you can use anonymous functions to
%   capture the problem-dependent parameters. Suppose you want to minimize 
%   the objective given in the function myfun, subject to the nonlinear 
%   constraint mycon, where these two functions are parameterized by their 
%   second argument a1 and a2, respectively. Here myfun and mycon are 
%   MATLAB file functions such as
%
%        function f = myfun(x,a1)      
%        f = x(1)^2 + a1*x(2)^2;       
%                                      
%        function [c,ceq] = mycon(x,a2)
%        c = a2/x(1) - x(2);
%        ceq = [];
%
%   To optimize for specific values of a1 and a2, first assign the values 
%   to these two parameters. Then create two one-argument anonymous 
%   functions that capture the values of a1 and a2, and call myfun and 
%   mycon with two arguments. Finally, pass these anonymous functions to 
%   FMINCON:
%
%        a1 = 2; a2 = 1.5; % define parameters first
%        options = optimoptions('fmincon','Algorithm','interior-point'); % run interior-point algorithm
%        x = fmincon(@(x) myfun(x,a1),[1;2],[],[],[],[],[],[],@(x) mycon(x,a2),options)
%
%   See also OPTIMOPTIONS, OPTIMTOOL, FMINUNC, FMINBND, FMINSEARCH, @, FUNCTION_HANDLE.

%   Copyright 1990-2013 The MathWorks, Inc.
*/
defaultopt = struct( ...
    'Algorithm','interior-point', ...
    'AlwaysHonorConstraints','bounds', ...
    'DerivativeCheck','off', ...
    'Diagnostics','off', ...
    'DiffMaxChange',Inf, ...
    'DiffMinChange',0, ...
    'Display','final', ...
    'FinDiffRelStep', [], ...
    'FinDiffType','forward', ...    
    'FunValCheck','off', ...
    'GradConstr','off', ...
    'GradObj','off', ...
    'HessFcn',[], ...
    'Hessian',[], ...    
    'HessMult',[], ...
    'HessPattern','sparse(ones(numberOfVariables))', ...
    'InitBarrierParam',0.1, ...
    'InitTrustRegionRadius','sqrt(numberOfVariables)', ...
    'MaxFunEvals',[], ...
    'MaxIter',[], ...
    'MaxPCGIter','max(1,floor(numberOfVariables/2))', ...
    'MaxProjCGIter','2*(numberOfVariables-numberOfEqualities)', ...    
    'MaxSQPIter','10*max(numberOfVariables,numberOfInequalities+numberOfBounds)', ...
    'ObjectiveLimit',-1e20, ...
    'OutputFcn',[], ...
    'PlotFcns',[], ...
    'PrecondBandWidth',0, ...
    'RelLineSrchBnd',[], ...
    'RelLineSrchBndDuration',1, ...
    'ScaleProblem','none', ...
    'SubproblemAlgorithm','ldl-factorization', ...
    'TolCon',1e-6, ...
    'TolConSQP',1e-6, ...    
    'TolFun',1e-6, ...
    'TolPCG',0.1, ...
    'TolProjCG',1e-2, ...
    'TolProjCGAbs',1e-10, ...
    'TolX',[], ...
    'TypicalX','ones(numberOfVariables,1)', ...
    'UseParallel',false ...
    );

% If just 'defaults' passed in, return the default options in X
if nargin==1 && nargout <= 1 && strcmpi(FUN,'defaults')
   X = defaultopt;
   return
end

if nargin < 10
    options = [];
    if nargin < 9
        NONLCON = [];
        if nargin < 8
            UB = [];
            if nargin < 7
                LB = [];
                if nargin < 6
                    Beq = [];
                    if nargin < 5
                        Aeq = [];
                    end
                end
            end
        end
    end
end

problemInput = false;
if nargin == 1
    if isa(FUN,'struct')
        problemInput = true;
        [FUN,X,A,B,Aeq,Beq,LB,UB,NONLCON,options] = separateOptimStruct(FUN);
    else % Single input and non-structure.
        error(message('optimlib:fmincon:InputArg'));
    end
end

% Prepare the options for the solver
[options, optionFeedback] = prepareOptionsForSolver(options, 'fmincon');

if nargin < 4 && ~problemInput
  error(message('optimlib:fmincon:AtLeastFourInputs'))
end

if isempty(NONLCON) && isempty(A) && isempty(Aeq) && isempty(UB) && isempty(LB)
   error(message('optimlib:fmincon:ConstrainedProblemsOnly'))
end

% Check for non-double inputs
msg = isoptimargdbl('FMINCON', {'X0','A','B','Aeq','Beq','LB','UB'}, ...
                                 X,  A,  B,  Aeq,  Beq,  LB,  UB);
if ~isempty(msg)
    error('optimlib:fmincon:NonDoubleInput',msg);
end

if nargout > 4
   computeLambda = true;
else 
   computeLambda = false;
end

activeSet = 'medium-scale: SQP, Quasi-Newton, line-search';
sqp = 'sequential quadratic programming';
trustRegionReflective = 'trust-region-reflective';
interiorPoint = 'interior-point';

[sizes.xRows,sizes.xCols] = size(X);
XOUT = X(:);
sizes.nVar = length(XOUT);
% Check for empty X
if sizes.nVar == 0
   error(message('optimlib:fmincon:EmptyX'));
end

display = optimget(options,'Display',defaultopt,'fast');
flags.detailedExitMsg = ~isempty(strfind(display,'detailed'));
switch display
    case {'off','none'}
        verbosity = 0;
    case {'notify','notify-detailed'}
        verbosity = 1;
    case {'final','final-detailed'}
        verbosity = 2;
    case {'iter','iter-detailed'}
        verbosity = 3;
    case 'testing'
        verbosity = 4;
    otherwise
        verbosity = 2;
end

% Set linear constraint right hand sides to column vectors
% (in particular, if empty, they will be made the correct
% size, 0-by-1)
B = B(:);
Beq = Beq(:);

% Check for consistency of linear constraints, before evaluating
% (potentially expensive) user functions 

% Set empty linear constraint matrices to the correct size, 0-by-n
if isempty(Aeq)
    Aeq = reshape(Aeq,0,sizes.nVar);
end
if isempty(A)
    A = reshape(A,0,sizes.nVar);   
end

[lin_eq,Aeqcol] = size(Aeq);
[lin_ineq,Acol] = size(A);
% These sizes checks assume that empty matrices have already been made the correct size
if Aeqcol ~= sizes.nVar
   error(message('optimlib:fmincon:WrongNumberOfColumnsInAeq', sizes.nVar))
end
if lin_eq ~= length(Beq)
    error(message('optimlib:fmincon:AeqAndBeqInconsistent'))
end
if Acol ~= sizes.nVar
   error(message('optimlib:fmincon:WrongNumberOfColumnsInA', sizes.nVar))
end
if lin_ineq ~= length(B)
    error(message('optimlib:fmincon:AeqAndBinInconsistent'))
end
% End of linear constraint consistency check

Algorithm = optimget(options,'Algorithm',defaultopt,'fast'); 

% Option needed for processing initial guess
AlwaysHonorConstraints = optimget(options,'AlwaysHonorConstraints',defaultopt,'fast'); 

% Determine algorithm user chose via options. (We need this now
% to set OUTPUT.algorithm in case of early termination due to 
% inconsistent bounds.) 
if strcmpi(Algorithm,'active-set')
    OUTPUT.algorithm = activeSet;
elseif strcmpi(Algorithm,'sqp')
    OUTPUT.algorithm = sqp;
elseif strcmpi(Algorithm,'interior-point')
    OUTPUT.algorithm = interiorPoint;
elseif strcmpi(Algorithm,'trust-region-reflective')
    OUTPUT.algorithm = trustRegionReflective;
else
    error(message('optimlib:fmincon:InvalidAlgorithm'));
end    

[XOUT,l,u,msg] = checkbounds(XOUT,LB,UB,sizes.nVar);
if ~isempty(msg)
   EXITFLAG = -2;
   [FVAL,LAMBDA,GRAD,HESSIAN] = deal([]);
   
   OUTPUT.iterations = 0;
   OUTPUT.funcCount = 0;
   OUTPUT.stepsize = [];
   if strcmpi(OUTPUT.algorithm,activeSet) || strcmpi(OUTPUT.algorithm,sqp)
       OUTPUT.lssteplength = [];
   else % trust-region-reflective, interior-point
       OUTPUT.cgiterations = [];
   end
   if strcmpi(OUTPUT.algorithm,interiorPoint) || strcmpi(OUTPUT.algorithm,activeSet) || ...
      strcmpi(OUTPUT.algorithm,sqp)
       OUTPUT.constrviolation = [];
   end
   OUTPUT.firstorderopt = [];
   OUTPUT.message = msg;
   
   X(:) = XOUT;
   if verbosity > 0
      disp(msg)
   end
   return
end

% Get logical list of finite lower and upper bounds
finDiffFlags.hasLBs = isfinite(l);
finDiffFlags.hasUBs = isfinite(u);

lFinite = l(finDiffFlags.hasLBs);
uFinite = u(finDiffFlags.hasUBs);

% Create structure of flags and initial values, initialize merit function
% type and the original shape of X.
flags.meritFunction = 0;
initVals.xOrigShape = X;

diagnostics = strcmpi(optimget(options,'Diagnostics',defaultopt,'fast'),'on');
funValCheck = strcmpi(optimget(options,'FunValCheck',defaultopt,'fast'),'on');
derivativeCheck = strcmpi(optimget(options,'DerivativeCheck',defaultopt,'fast'),'on');

% Gather options needed for finitedifferences
% Write checked DiffMaxChange, DiffMinChage, FinDiffType, FinDiffRelStep,
% GradObj and GradConstr options back into struct for later use
options.DiffMinChange = optimget(options,'DiffMinChange',defaultopt,'fast');
options.DiffMaxChange = optimget(options,'DiffMaxChange',defaultopt,'fast');
if options.DiffMinChange >= options.DiffMaxChange
    error(message('optimlib:fmincon:DiffChangesInconsistent', sprintf( '%0.5g', options.DiffMinChange ), sprintf( '%0.5g', options.DiffMaxChange )))
end
% Read in and error check option TypicalX
[typicalx,ME] = getNumericOrStringFieldValue('TypicalX','ones(numberOfVariables,1)', ...
    ones(sizes.nVar,1),'a numeric value',options,defaultopt);
if ~isempty(ME)
    throw(ME)
end
checkoptionsize('TypicalX', size(typicalx), sizes.nVar);
options.TypicalX = typicalx;
options.FinDiffType = optimget(options,'FinDiffType',defaultopt,'fast');
options = validateFinDiffRelStep(sizes.nVar,options,defaultopt);
options.GradObj = optimget(options,'GradObj',defaultopt,'fast');
options.GradConstr = optimget(options,'GradConstr',defaultopt,'fast');

flags.grad = strcmpi(options.GradObj,'on');

% Notice that defaultopt.Hessian = [], so the variable "hessian" can be empty
hessian = optimget(options,'Hessian',defaultopt,'fast'); 
% If calling trust-region-reflective with an unavailable Hessian option value, 
% issue informative error message
if strcmpi(OUTPUT.algorithm,trustRegionReflective) && ...
        ~( isempty(hessian) || strcmpi(hessian,'on') || strcmpi(hessian,'user-supplied') || ...
           strcmpi(hessian,'off') || strcmpi(hessian,'fin-diff-grads')  )
    error(message('optimlib:fmincon:BadTRReflectHessianValue'))
end

if ~iscell(hessian) && ( strcmpi(hessian,'user-supplied') || strcmpi(hessian,'on') )
    flags.hess = true;
else
    flags.hess = false;
end

if isempty(NONLCON)
   flags.constr = false;
else
   flags.constr = true;
end

% Process objective function
if ~isempty(FUN)  % will detect empty string, empty matrix, empty cell array
   % constrflag in optimfcnchk set to false because we're checking the objective, not constraint
   funfcn = optimfcnchk(FUN,'fmincon',length(varargin),funValCheck,flags.grad,flags.hess,false,Algorithm);
else
   error(message('optimlib:fmincon:InvalidFUN'));
end

% Process constraint function
if flags.constr % NONLCON is non-empty
   flags.gradconst = strcmpi(options.GradConstr,'on');
   % hessflag in optimfcnchk set to false because hessian is never returned by nonlinear constraint 
   % function
   %
   % constrflag in optimfcnchk set to true because we're checking the constraints
   confcn = optimfcnchk(NONLCON,'fmincon',length(varargin),funValCheck,flags.gradconst,false,true);
else
   flags.gradconst = false; 
   confcn = {'','','','',''};
end

[rowAeq,colAeq] = size(Aeq);

if strcmpi(OUTPUT.algorithm,activeSet) || strcmpi(OUTPUT.algorithm,sqp)
    % See if linear constraints are sparse and if user passed in Hessian
    if issparse(Aeq) || issparse(A)
        warning(message('optimlib:fmincon:ConvertingToFull', Algorithm))
    end
    if flags.hess % conflicting options
        flags.hess = false;
        warning(message('optimlib:fmincon:HessianIgnoredForAlg', Algorithm));
        if strcmpi(funfcn{1},'fungradhess')
            funfcn{1}='fungrad';
        elseif  strcmpi(funfcn{1},'fun_then_grad_then_hess')
            funfcn{1}='fun_then_grad';
        end
    end
elseif strcmpi(OUTPUT.algorithm,trustRegionReflective)
    % Look at constraint type and supplied derivatives, and determine if
    % trust-region-reflective can solve problem
    isBoundedNLP = isempty(NONLCON) && isempty(A) && isempty(Aeq); % problem has only bounds and no other constraints 
    isLinEqNLP = isempty(NONLCON) && isempty(A) && isempty(lFinite) ...
        && isempty(uFinite) && colAeq > rowAeq;
    if isBoundedNLP && flags.grad
        % if only l and u then call sfminbx
    elseif isLinEqNLP && flags.grad
        % if only Aeq beq and Aeq has more columns than rows, then call sfminle
    else
        if ~isBoundedNLP && ~isLinEqNLP
            error(message('optimlib:fmincon:ConstrTRR', ...
                addLink( 'Choosing the Algorithm', 'choose_algorithm' )))            
        else
            % The user has a problem that satisfies the TRR constraint
            % restrictions but they haven't supplied gradients.
            error(message('optimlib:fmincon:GradOffTRR', ...
                addLink( 'Choosing the Algorithm', 'choose_algorithm' )))
        end
    end
end

lenvlb = length(l);
lenvub = length(u);

% Process initial point 
shiftedX0 = false; % boolean that indicates if initial point was shifted
if strcmpi(OUTPUT.algorithm,activeSet)
   %
   % Ensure starting point lies within bounds
   %
   i=1:lenvlb;
   lindex = XOUT(i)<l(i);
   if any(lindex)
      XOUT(lindex)=l(lindex); 
      shiftedX0 = true;
   end
   i=1:lenvub;
   uindex = XOUT(i)>u(i);
   if any(uindex)
      XOUT(uindex)=u(uindex);
      shiftedX0 = true;
   end
   X(:) = XOUT;
elseif strcmpi(OUTPUT.algorithm,trustRegionReflective)
   %
   % If components of initial x not within bounds, set those components  
   % of initial point to a "box-centered" point
   %
   if isempty(Aeq)
       arg = (u >= 1e10); arg2 = (l <= -1e10);
       u(arg) = inf;
       l(arg2) = -inf;
       xinitOutOfBounds_idx = XOUT < l | XOUT > u;
       if any(xinitOutOfBounds_idx)
           shiftedX0 = true;
           XOUT = startx(u,l,XOUT,xinitOutOfBounds_idx);
           X(:) = XOUT;
       end
   else
      % Phase-1 for sfminle nearest feas. pt. to XOUT. Don't print a
      % message for this change in X0 for sfminle. 
       XOUT = feasibl(Aeq,Beq,XOUT);
       X(:) = XOUT;
   end

elseif strcmpi(OUTPUT.algorithm,interiorPoint)
    % Variables: fixed, finite lower bounds, finite upper bounds
    xIndices = classifyBoundsOnVars(l,u,sizes.nVar,true);

    % If honor bounds mode, then check that initial point strictly satisfies the
    % simple inequality bounds on the variables and exactly satisfies fixed variable
    % bounds.
    if strcmpi(AlwaysHonorConstraints,'bounds') || strcmpi(AlwaysHonorConstraints,'bounds-ineqs')
        violatedFixedBnds_idx = XOUT(xIndices.fixed) ~= l(xIndices.fixed);
        violatedLowerBnds_idx = XOUT(xIndices.finiteLb) <= l(xIndices.finiteLb);
        violatedUpperBnds_idx = XOUT(xIndices.finiteUb) >= u(xIndices.finiteUb);
        if any(violatedLowerBnds_idx) || any(violatedUpperBnds_idx) || any(violatedFixedBnds_idx)
            XOUT = shiftInitPtToInterior(sizes.nVar,XOUT,l,u,Inf);
            X(:) = XOUT;
            shiftedX0 = true;
        end
    end
else % SQP
    % Classify variables: finite lower bounds, finite upper bounds
    xIndices = classifyBoundsOnVars(l,u,sizes.nVar,false);
    
    % SQP always honors the bounds. Check that initial point
    % strictly satisfies the bounds on the variables.
    violatedLowerBnds_idx = XOUT(xIndices.finiteLb) < l(xIndices.finiteLb);
    violatedUpperBnds_idx = XOUT(xIndices.finiteUb) > u(xIndices.finiteUb);
    if any(violatedLowerBnds_idx) || any(violatedUpperBnds_idx)
        finiteLbIdx = find(xIndices.finiteLb);
        finiteUbIdx = find(xIndices.finiteUb);
        XOUT(finiteLbIdx(violatedLowerBnds_idx)) = l(finiteLbIdx(violatedLowerBnds_idx));
        XOUT(finiteUbIdx(violatedUpperBnds_idx)) = u(finiteUbIdx(violatedUpperBnds_idx));
        X(:) = XOUT;
        shiftedX0 = true;
    end
end

% Display that x0 was shifted in order to honor bounds
if shiftedX0
    if verbosity >= 3
        if strcmpi(OUTPUT.algorithm,interiorPoint) 
            fprintf(getString(message('optimlib:fmincon:ShiftX0StrictInterior')));
            fprintf('\n');
        else
            fprintf(getString(message('optimlib:fmincon:ShiftX0ToBnds')));
            fprintf('\n');
        end
    end
end
    
% Evaluate function
initVals.g = zeros(sizes.nVar,1);
HESSIAN = []; 

switch funfcn{1}
case 'fun'
   try
      initVals.f = feval(funfcn{3},X,varargin{:});
   catch userFcn_ME
        optim_ME = MException('optimlib:fmincon:ObjectiveError', ...
            getString(message('optimlib:fmincon:ObjectiveError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
   end
case 'fungrad'
   try
      [initVals.f,initVals.g] = feval(funfcn{3},X,varargin{:});
   catch userFcn_ME
        optim_ME = MException('optimlib:fmincon:ObjectiveError', ...
            getString(message('optimlib:fmincon:ObjectiveError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
   end
case 'fungradhess'
   try
      [initVals.f,initVals.g,HESSIAN] = feval(funfcn{3},X,varargin{:});
   catch userFcn_ME
        optim_ME = MException('optimlib:fmincon:ObjectiveError', ...
            getString(message('optimlib:fmincon:ObjectiveError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
   end
case 'fun_then_grad'
   try
      initVals.f = feval(funfcn{3},X,varargin{:});
   catch userFcn_ME
        optim_ME = MException('optimlib:fmincon:ObjectiveError', ...
            getString(message('optimlib:fmincon:ObjectiveError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
   end
   try
      initVals.g = feval(funfcn{4},X,varargin{:});
   catch userFcn_ME
        optim_ME = MException('optimlib:fmincon:GradientError', ...
            getString(message('optimlib:fmincon:GradientError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
   end
case 'fun_then_grad_then_hess'
   try
      initVals.f = feval(funfcn{3},X,varargin{:});
   catch userFcn_ME
        optim_ME = MException('optimlib:fmincon:ObjectiveError', ...
            getString(message('optimlib:fmincon:ObjectiveError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
   end
   try
      initVals.g = feval(funfcn{4},X,varargin{:});
   catch userFcn_ME
        optim_ME = MException('optimlib:fmincon:GradientError', ...
            getString(message('optimlib:fmincon:GradientError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
   end
   try
      HESSIAN = feval(funfcn{5},X,varargin{:});
   catch userFcn_ME
        optim_ME = MException('optimlib:fmincon:HessianError', ...
            getString(message('optimlib:fmincon:HessianError')));            
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
   end
otherwise
   error(message('optimlib:fmincon:UndefinedCallType'));
end

% Check that the objective value is a scalar
if numel(initVals.f) ~= 1
   error(message('optimlib:fmincon:NonScalarObj'))
end

% Check that the objective gradient is the right size
initVals.g = initVals.g(:);
if numel(initVals.g) ~= sizes.nVar
   error('optimlib:fmincon:InvalidSizeOfGradient', ...
       getString(message('optimlib:commonMsgs:InvalidSizeOfGradient',sizes.nVar)));
end

% Evaluate constraints
switch confcn{1}
case 'fun'
    try
        [ctmp,ceqtmp] = feval(confcn{3},X,varargin{:});
    catch userFcn_ME
        if strcmpi('MATLAB:maxlhs',userFcn_ME.identifier)
                error(message('optimlib:fmincon:InvalidHandleNonlcon'))
        else
            optim_ME = MException('optimlib:fmincon:NonlconError', ...
                getString(message('optimlib:fmincon:NonlconError')));
            userFcn_ME = addCause(userFcn_ME,optim_ME);
            rethrow(userFcn_ME)
        end
    end
    initVals.ncineq = ctmp(:);
    initVals.nceq = ceqtmp(:);
    initVals.gnc = zeros(sizes.nVar,length(initVals.ncineq));
    initVals.gnceq = zeros(sizes.nVar,length(initVals.nceq));
case 'fungrad'
   try
      [ctmp,ceqtmp,initVals.gnc,initVals.gnceq] = feval(confcn{3},X,varargin{:});
   catch userFcn_ME
       optim_ME = MException('optimlib:fmincon:NonlconError', ...
           getString(message('optimlib:fmincon:NonlconError')));           
       userFcn_ME = addCause(userFcn_ME,optim_ME);
       rethrow(userFcn_ME)
   end
   initVals.ncineq = ctmp(:);
   initVals.nceq = ceqtmp(:);
case 'fun_then_grad'
    try
        [ctmp,ceqtmp] = feval(confcn{3},X,varargin{:});
    catch userFcn_ME
        optim_ME = MException('optimlib:fmincon:NonlconError', ...
            getString(message('optimlib:fmincon:NonlconError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
    end
    initVals.ncineq = ctmp(:);
    initVals.nceq = ceqtmp(:);
    try
        [initVals.gnc,initVals.gnceq] = feval(confcn{4},X,varargin{:});
    catch userFcn_ME
        optim_ME = MException('optimlib:fmincon:NonlconFunOrGradError', ...
            getString(message('optimlib:fmincon:NonlconFunOrGradError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
    end
case ''
   % No nonlinear constraints. Reshaping of empty quantities is done later
   % in this file, where both cases, (i) no nonlinear constraints and (ii)
   % nonlinear constraints that have one type missing (equalities or
   % inequalities), are handled in one place
   initVals.ncineq = [];
   initVals.nceq = [];
   initVals.gnc = [];
   initVals.gnceq = [];
otherwise
   error(message('optimlib:fmincon:UndefinedCallType'));
end

% Check for non-double data typed values returned by user functions 
if ~isempty( isoptimargdbl('FMINCON', {'f','g','H','c','ceq','gc','gceq'}, ...
   initVals.f, initVals.g, HESSIAN, initVals.ncineq, initVals.nceq, initVals.gnc, initVals.gnceq) )
    error('optimlib:fmincon:NonDoubleFunVal',getString(message('optimlib:commonMsgs:NonDoubleFunVal','FMINCON')));
end

sizes.mNonlinEq = length(initVals.nceq);
sizes.mNonlinIneq = length(initVals.ncineq);

% Make sure empty constraint and their derivatives have correct sizes (not 0-by-0):
if isempty(initVals.ncineq)
    initVals.ncineq = reshape(initVals.ncineq,0,1);
end
if isempty(initVals.nceq)
    initVals.nceq = reshape(initVals.nceq,0,1);
end
if isempty(initVals.gnc)
    initVals.gnc = reshape(initVals.gnc,sizes.nVar,0);
end
if isempty(initVals.gnceq)
    initVals.gnceq = reshape(initVals.gnceq,sizes.nVar,0);
end
[cgrow,cgcol] = size(initVals.gnc);
[ceqgrow,ceqgcol] = size(initVals.gnceq);

if cgrow ~= sizes.nVar || cgcol ~= sizes.mNonlinIneq
   error(message('optimlib:fmincon:WrongSizeGradNonlinIneq', sizes.nVar, sizes.mNonlinIneq))
end
if ceqgrow ~= sizes.nVar || ceqgcol ~= sizes.mNonlinEq
   error(message('optimlib:fmincon:WrongSizeGradNonlinEq', sizes.nVar, sizes.mNonlinEq))
end

if diagnostics
   % Do diagnostics on information so far
   diagnose('fmincon',OUTPUT,flags.grad,flags.hess,flags.constr,flags.gradconst,...
      XOUT,sizes.mNonlinEq,sizes.mNonlinIneq,lin_eq,lin_ineq,l,u,funfcn,confcn);
end

% Create default structure of flags for finitedifferences:
% This structure will (temporarily) ignore some of the features that are
% algorithm-specific (e.g. scaling and fault-tolerance) and can be turned
% on later for the main algorithm.
finDiffFlags.fwdFinDiff = strcmpi(options.FinDiffType,'forward');
finDiffFlags.scaleObjConstr = false; % No scaling for now
finDiffFlags.chkFunEval = false;     % No fault-tolerance yet
finDiffFlags.chkComplexObj = false;  % No need to check for complex values
finDiffFlags.isGrad = true;          % Scalar objective

% Check derivatives
if derivativeCheck && ...               % User wants to check derivatives...
   (flags.grad || ...                   % of either objective or ...
   flags.gradconst && sizes.mNonlinEq+sizes.mNonlinIneq > 0) % nonlinear constraint function.
    validateFirstDerivatives(funfcn,confcn,X, ...
        l,u,options,finDiffFlags,sizes,varargin{:});
end

% call algorithm
if strcmpi(OUTPUT.algorithm,activeSet) % active-set
    defaultopt.MaxIter = 400; defaultopt.MaxFunEvals = '100*numberofvariables'; defaultopt.TolX = 1e-6;
    defaultopt.Hessian = 'off';
    problemInfo = []; % No problem related data
    [X,FVAL,LAMBDA,EXITFLAG,OUTPUT,GRAD,HESSIAN]=...
        nlconst(funfcn,X,l,u,full(A),B,full(Aeq),Beq,confcn,options,defaultopt, ...
        finDiffFlags,verbosity,flags,initVals,problemInfo,optionFeedback,varargin{:});
elseif strcmpi(OUTPUT.algorithm,trustRegionReflective) % trust-region-reflective
   if (strcmpi(funfcn{1}, 'fun_then_grad_then_hess') || strcmpi(funfcn{1}, 'fungradhess'))
      Hstr = [];
   elseif (strcmpi(funfcn{1}, 'fun_then_grad') || strcmpi(funfcn{1}, 'fungrad'))
      n = length(XOUT); 
      Hstr = optimget(options,'HessPattern',defaultopt,'fast');
      if ischar(Hstr) 
         if strcmpi(Hstr,'sparse(ones(numberofvariables))')
            Hstr = sparse(ones(n));
         else
            error(message('optimlib:fmincon:InvalidHessPattern'))
         end
      end
      checkoptionsize('HessPattern', size(Hstr), n);
   end
   
   defaultopt.MaxIter = 400; defaultopt.MaxFunEvals = '100*numberofvariables'; defaultopt.TolX = 1e-6;
   defaultopt.Hessian = 'off';
   % Trust-region-reflective algorithm does not compute constraint
   % violation as it progresses. If the user requests the output structure,
   % we need to calculate the constraint violation at the returned
   % solution.
   if nargout > 3
       computeConstrViolForOutput = true;
   else
       computeConstrViolForOutput = false;
   end

   if isempty(Aeq)
      [X,FVAL,LAMBDA,EXITFLAG,OUTPUT,GRAD,HESSIAN] = ...
         sfminbx(funfcn,X,l,u,verbosity,options,defaultopt,computeLambda,initVals.f,initVals.g, ...
         HESSIAN,Hstr,flags.detailedExitMsg,computeConstrViolForOutput,optionFeedback,varargin{:});
   else
      [X,FVAL,LAMBDA,EXITFLAG,OUTPUT,GRAD,HESSIAN] = ...
         sfminle(funfcn,X,sparse(Aeq),Beq,verbosity,options,defaultopt,computeLambda,initVals.f, ...
         initVals.g,HESSIAN,Hstr,flags.detailedExitMsg,computeConstrViolForOutput,optionFeedback,varargin{:});
   end
elseif strcmpi(OUTPUT.algorithm,interiorPoint)
    defaultopt.MaxIter = 1000; defaultopt.MaxFunEvals = 3000; defaultopt.TolX = 1e-10;
    defaultopt.Hessian = 'bfgs';
    mEq = lin_eq + sizes.mNonlinEq + nnz(xIndices.fixed); % number of equalities
    % Interior-point-specific options. Default values for lbfgs memory is 10, and 
    % ldl pivot threshold is 0.01
    options = getIpOptions(options,sizes.nVar,mEq,flags.constr,defaultopt,10,0.01); 

    [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] = barrier(funfcn,X,A,B,Aeq,Beq,l,u,confcn,options.HessFcn, ...
        initVals.f,initVals.g,initVals.ncineq,initVals.nceq,initVals.gnc,initVals.gnceq,HESSIAN, ...
        xIndices,options,optionFeedback,finDiffFlags,varargin{:});
else % sqp
    defaultopt.MaxIter = 400; defaultopt.MaxFunEvals = '100*numberofvariables'; 
    defaultopt.TolX = 1e-6; defaultopt.Hessian = 'bfgs';
    % Validate options used by sqp
    options = getSQPOptions(options,defaultopt,sizes.nVar);
    optionFeedback.detailedExitMsg = flags.detailedExitMsg;
    % Call algorithm
    [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] = sqpLineSearch(funfcn,X,full(A),full(B),full(Aeq),full(Beq), ...
        full(l),full(u),confcn,initVals.f,full(initVals.g),full(initVals.ncineq),full(initVals.nceq), ...
        full(initVals.gnc),full(initVals.gnceq),xIndices,options,finDiffFlags,verbosity,optionFeedback,varargin{:});
end

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/130216.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档